Unified Logging System

Antony Mapfumo (02786923)

24th December 2004
Course: EE74 Master of Engineering Science (Computer & Communications)
Subject: EEP301 Project

Supervisor: Dr. Chandran

Abstract

Australia Post operates optical character recognition based mail sorfing
machines. Occasionally they have faults which vary in severity. These faults are
logged and sent to a central server for analysis. This project focussed on developing
tools to allow technicians and managers to view and analyse these faults in an
infuitive manner with the aim of using this information to improve mail delivery service
and reduce costs along the way. A unified logging system allows for the definition of a
common log file format with which the various kinds of mail sorting machines need to

adhere to with the aim of analysing faults from a central point.

A log analysis tool prototype was already in place. Several enhancements and
addifions were made to it. The user interface was improved to make it more intuitive,
search facilities were enhanced, and new search capabilities were introduced. The
ability to automatically email reports to users was infroduced as was machine
comparison analysis. Improvements in log file storage and caching resulted in the
time required to generate reports being improved. A simple but powerful user guide

was developed as was the detailed design documentation.

Statement of original authorship

The work contained in this project report has not been previously submitted for
assessment at any other tertiary educational institution. To the best of my knowledge
and belief, the project contains no material previously published or written by another

person except where due reference is made.

Maplre

Antony Mapfumo
Date: 29t December 2004

Statement of project completion

The minimum requirements as specified in the project proposal have been met and

where a requirement has not been met a satisfactory reason has been given.

Queensland University of Technology supervisor

f"\—Q‘L‘*"@n an AP Date: ‘-J-J_'Jor
ATF. V. CHAIBAAN

Australia Post supervisor

iZ’f ﬁ;@% Date: éé/ 4 ﬁ:ir

Acknowledgement

| would like to acknowledge and thank the following people for their assistance and

patience during the completion of this project:-

e Robert Lunnon

e Dr. Vinod Chandran

e The staff at Australia Post, Network Engineering Unit, who helped me in finding
my way around and who made nice barbeques at the end of every month
whilst | was there which helped in keeping me relaxed.

e Suzanne Garvey for helping with cooking and proof reading my thesis

Contents

ADSTIACT aueneeiiiiciiitiitinsticneiseisteessecsstiseesssessssiessnssssssssesssssssssssssssssessssssssssssassssassssssssasssassss 1
Statement of original Authorshipoueveenneeneenneninennennseensenssnensneenanes 2
Statement of project COMPIEtionccocueieiveiciisnrcssnicssrisssnisssanisssssssssssessssssssssssssssssssssssnsses 2
ACKNOWICAZEIMENT «..uueeeuiriininiennsnensnnisannsncsssesssnnsssnsssncsssesssssssasssssssssasssssssassssassssasssssssassssassss 3
TaDIE Of fIGUIES ccccuverirrriiiinrininicssninisnicssnicssanissssnssssasssssssesssssssssssssssssssssssssssssssnsssssnsssssnsssssnss 5
1 INErOAUCTION ouueeecnenriineriiiniissntiessnencsssnecsssnessssnessssecssssesssssssssssasssssesssssesssssesssssessssssssssnsssssssses 6
2 Application of OCR t0 Mail SOTtiNG......cccoveirirricrsrissranesssnnesssnresssressssrssssssssssssssssssssssssssnss 8
3 Problems associated with mail SOrtingcccueeevveiissiicisniissricssnecssneicsssncssssncssssnessssnenes 10
3.1 EVENE LOZZING ..ttt ettt ettt ettt e sab e et e nte e beesaeeenbeenneas 11
4 Mail SOrting Challengesccovueeeivueieniiicssnicisnicssnninssnnicssseecssssessssnessseesssssessssnesssssssssssses 12
5 Project Objectives .13
5.1 Improvements to the original PrototyPe........cceecveriierieeiiieiieeieeeie et 14
5.2 New features added to the ProtOtYPE......cocueriierieiiierie et 16
6.1 Anticipated value 0f the PrOJECtcc.eeviieiiieiiiieiieeeee e 18
0.2 ACtUal PIOJECT OULCOIMIEoueiieuiieiiieiieeieeeiee ettt te ettt e sttt ee st e et esabeeabeessaeebeesaeeenseennees 18
6.2.1 Technical improvements to enhance the accuracy of the FMOCR data.................... 18
6.2.2 Log file information restructuring to align to 6AM-6AM day.........ccceevverieennennen. 19
6.2.3 Implementing hierarchical relationship analysis..........cccooceeveiieriieciieniieiiienieeieeee, 19
7 Research Methodology.......ccueicineicsssnicisnicssanisssanesssssessssnsses 20
8 Project outcome, functionality and value 21
8.1 PrOJECt VAlUC ...ttt ettt ettt et e e e saaeenee 21
8.2 Project FUNCHIONAIILY ...ccccuviiiiiieeiiiecieece ettt et 21
O LesSONS Learnedeeieeeiveeiieiisnensennsnecsencssesssenssseesssnsssesssssssssssssssssasssssssssssssssssassssssssass 27
0.1 Problems faCecoouieiiiieiiiiece ettt 27
10 Future improvements 28
11 CONCIUSION . ..uuciiiniiiintriiintiissnnicssneicsssnessssnessssnessssnessssnsssssssssssssssssesssssesssssessssssssssssssssssssssses 29
12 GlOSSATY cuueiiriniccsnrcssnrcssnnicsssnscsssassssssssssssssssssssssssssssnsssssnsssssasses 30
13 RETEICICES ..uuuerecuniriinrriinriissnnicssnnicsssnicsssnecsssncssssncssssnesssssessssssssssasssssssssssessssssssssssssssssssssses 31
14 Appendix A — USEr GUIAE ...ccicvvueiervuricsrarccssencsssnnsssnnsssassnssssssssss 32
15 Appendix B — Design documentationcceeeenceicssencsssnncssencsseressssscssssscssssscsssscsssses 59
16 APPendix C — SOUICE COUC...cccnuuiirrrrinsrarisssarcsssansssnrsssasssssssssssssssssasssssassssssssssssssssnsssssnssss 82

Table of figures

Figure 1- Event logging and central log server relationshipcccoceevevvinieninienienciicneene, 11
Figure 2 — New USET INEETTACEcccuviiiiiieiiiiecie ettt e e e b e e reeesaaeeenneas 22
Figure 3 - Sample €mail TEPOTT......c..ieruiiiiieiie ettt ettt sae b e sebeeneaen 25
Figure 4 - Machine Comparison analysSiS........cueecveeeriieerieeeiieeeiieeeiieeeeieeeeseeesseeesseeessseesnsnes 26
Figure 5 - RIS main web page Snapshot..........ccoovuiiiiiiiiiiiiiieieeieee e 33
Figure 6 - FMOCR main web page snap Shot..........cccuiiiiiiieiiieeiiie e 34
Figure 7 - FMOCR trend fOrmc..coouiiiiiiiiiiieiicientecceeee ettt 34
Figure 8 - Query by EVEnt TEXtc.cooiiiiiiiiiiciieieeeese ettt et sbe e ens 36
Figure 9 - Query by EVEnt TyYPe.......oouiiiiiiieeiee et et 36
Figure 10 - QUEry DY MOQUIC........ccuiiiiieiiiiii ettt eae e s ae b ssseeeee e 37
Figure 11 - Query by Module IDc.oooiiiiiiieee et 37
Figure 12 - QUEry DY dUTatioN.......ccueeeiiiiiiiiiieiieciiecie ettt ereesaaeeseessseesaens 38
Figure 13 - QUEry Y CTItICAIILYcccuieiiiiiiieiie et 38
Figure 14 - Query by IMPairMeNt..........cccuieiiieiiiieiiieeiieiieeeieeieeereeeee e ereesveeseessseessaessseeseanns 39
Figure 15 - QUETY DY tINE ...ootiiiiieiieeiiee ettt ettt et ettt et e saeesbeesaee 39
Figure 16 - QUery by WatCh LiSt......c.ccoouiiiiiiiiiiiieeiiecie ettt 40
Figure 17 - Multi-field search [2 flelds].......cccooiieiiiiiiiieie e 41
Figure 18 - Multi-field search [3 fields].......ccccovuieoiiiriiiiiieciiciecceceece e 41
Figure 19 - Multi-field search [4 flelds].......cccooiieiiiiiiiie e 42
Figure 20 - Sample trend output (Page tOP)coveeevieiieiiieiieeieeee ettt 42
Figure 21 - Sample trend output (Page middle)cocevviniiiiiniiniiiiiiiceeceecee 43
Figure 22 - Sample trend output (Page bottom)........c.eecuieriieiieeiieiieeieeie e 43
Figure 23 - Do an FMOCR L0Og RePOTtcceiiiiiiiiiiiniiiiieiceteeceeeeieeeeee e 44
Figure 24 - FMOCR LOZ REPOTTING......cccuiiiiiiiiiiiieeiieiie et eiee et eiee e eteesveesaeesnseesseesssaenseaens 44
Figure 25 - Top 10/20 Report for yesterday.........cueeuieiieriienieeiiesieeeeee e 45
Figure 26 - Quick watch list report for yesterdayccoecveriiiciienieeiieie e 45
Figure 27 - Quick watch list report for any daycocceeeiiiiiiiiiini e 46
Figure 28 - Quick watch list report for any day sample resultscceeeeeeiierieeciienieeciieneenns 46
Figure 29 - Watch Llist r@ZiStration..........cceiiiiiiiiiiiieiie ettt 47
Figure 30 - Registration confirmation PAZEceeueerueerieenieeeiiienieereesieeeseesseesseesseesseesseenns 48
Figure 31 - Watch list editing login page snapshot...........cccoeviiriiiiiiiiiieiieeieee e 48
Figure 32 - Watch list editing introduction page snapshot.............ccccueeviieviieniiieiienieeieerie e, 49
Figure 33 - Creating @ WatChlISt.......ccc.oviiiiiiiiiiiiiiiec e 50
Figure 34 - Adding watch lists t0 your profile..........ccociieviiiiiieiiiiiiceececeeee e 51
Figure 35 - Email reports (TOP EVENLS)ceiiuieiiiiiieeiieiie ettt 52
Figure 36 - Email reports (watchlist COMPAriSON)........cccveevuierieeriieiiieiieeieeriie e eiee e eseeeeveens 53
Figure 37 - Email reports (history graph).........cooceeeiiiiiiiiiiieeee e 54
Figure 38 - Daily qUICK SUMMATYcc.cooiiiiiiiiiiiciieeie ettt e sve e e aeerea e 54
Figure 39 - Stop events by duration snapshotccceeviriiniiiiniiniiiceeeeeee 57
Figure 40 - CompariSON GraphS........cc.uiiiiiiiieiiieiieeie ettt ettt e ereesteesbeesteeeseessaessaessseens 57

1 Introduction

Australia Post is one of Australia's top ranking companies. They handle more than
19 million articles of mail each working day or over 4.7 billion articles per year and
provide service to the one million customers who visit their retail store outlets each day.
The aim of this project was to integrate event information from its Flat Mail Optical
Character Reader (FMOCR) automated mail sorting machines to a central repository,
and to develop tools to search and collate this information in an easy and intuifive
way. Flat Mail Optical Character Readers machines sort large letter mail (known as
Flats) such as magazines and A4 envelops. As these machines incorporate pattern
recognition a brief insight into optical character recognition will help in understanding
their functionality. Optical character recognition is the recognition of printed or
handwritten text by a computer system so that the text can be stored in computers as
characters instead of images [6]. At the heart of every OCR system is a scanner for

reading text and software for analysing images.

The first step involves using a scanner to acquire an image, as a bitmap,
containing the text you are interested in. The next step involves using software based
on complicated image processing techniques to identify the individual characters in
the document. To improve accuracy, modern OCR programs make use of multiple
algorithms of neural network technology to analyse the text in a document [7]. They
can better analyse the stroke edges and distinguish text from the background. To
cater for irregularities of printed ink on paper the algorithms averages the dark and
light regions along a stroke to make a better decision as to what character it is. The
main advantage of an OCR system is that it makes it easier and quicker to read text
from printed or handwritten material [1]. Better hardware and image processing

algorithms have improved OCR accuracy over the years.

Using a good scanner is the first step in getting better results. A high resolution
scanner will ensure that there are more distinct colours or more distinct shades of grey
in the case of black and white text. High resolution scanning also improves
recognition of very small type especially those under 6 points. In the past acquiring
high resolution images meant more time was required to read the image which would
be undesirable in a mail sorting operation which handles more than 10, 000 pieces of

mail per hour. However, recent parallel and dedicated hardware are faster at

acquiring images for character recognition. Some OCR systems occasionally find it
hard to distinguish similar characters like I and 1, or 0 and O. This is especially true in
recognising hand written text. Some systems overcome this problem by training the
OCR system to handle noisy input and similar looking characters. The more training the

system gefts the more accurate will be the character recognition over time.

2 Application of OCR to mail sorting

To understand the benefits of using optical character recognition techniques for
mail sorting let's have a quick overview of how postal mail centres use to sort mail in
the past. Mail and parcels were collected from post boxes and post offices and then
tfransported to mail processing centres. Employees then looked at the address of
each and every item and passed it to the appropriate section for further processing

by other employees [8].

As the volume of mail processed at mail centres around the world increased it
was quickly realised automating the postal sorting process was necessary if mail was
to continue to be delivered in time [3]. Research into the use of optical character
recognition for postal sorting started in the 1950s but it was not until 1982 that the first
OCR based machine was utilised by The United States Postal Service [4]. Before OCR
was used previous mail sorting automation machines were Multi-Position Letter Sorting
Machines (MPLSM) whose operations were largely manual and required 17 operators.
By the end of 1984 more than 250 OCR based mail sorting machines were being used
the US Postal Service and they were processing more than 20,000 mail pieces per hour.
At this stage the machines could not process handwritten mail pieces. Over the years
improvements have been made to the accuracy of OCR based systems as well as

the ability to handle hand written mail pieces.

On average an Australia Post mail sorting employee can process 1,000 mail items
per hour whilst optical character based mail sorting has a peak performance of
around 28,000 items per hour. From these figures, it is clear that a mail sorting machine
can process the same amount of mail 24 employees (around 4 people are needed to
operate the FMOCR machines) can process per hour. Whilst these are rough figures
they give a good indication of the savings and efficiency associated with OCR based
machines to sort mail. Mail sorting machines at Australia post make use of opftical
character recognition technology to achieve on time delivery of mail. The FMOCR
machines are up to 82 m long and incorporate up to 480 terminal stations (most of
these terminals are output terminals that do not require human intervention). They are
capable of automatically sorting up to 28,000 large letters an hour including plastic
wrapped items. These machines scan the address block on each A4 sized mail item to

determine the postal and the delivery point information. They then verify the scanned

information against an internal database. Like any other OCR based technology
FMOCR machines are susceptible to bad hand writing (at Australia Post handwritings
are recognised about 65% of the time and printed materials are recognised 85% of
the time), however the problem is not so bad because the majority of the mail
processed is in printed form. A video character recognition system (VCR) together
with employees provide backup to the FMOCR machines. Once a mail item is
successfully scanned it is then bar-coded for further processing by barcode sorters
which are very fast mail sorting machines. If a mail item is already bar-coded the
whole opftical scanning and recognition is skipped and the mail item is transferred

directly to the bar code sorter.

3 Problems associated with mail sorting

The FMOCR mail sorting machines are very big, complicated and consist of large
networks of programmable logic devices (PLCs) monitoring and helping with the mail
sorfing process. Some of the PLCs monitor the thickness of mail items whilst others do
tasks like counting mail items. The following paragraphs explain some of the errors
which can occur. Some errors require the machines to be stopped and the sorting
operation cannot proceed until the problem has been sorted. These events are
called impair or stop events depending on the duration of the event. Some events
are just warnings. Whilst they do not require the machines to be stopped, they are a

good indication that an impair event will occur soon if they are not attended to.

The machines require mail to be of certain maximum dimensions (about A4 size).
When mail pieces larger than the stipulated size are put into the machine a couple of
errors will be generated when the mail item jams sections of the machine. For
example, once it blocks the entry into the feeder all other mail items cannot go
through and the conveyor belt will be automatically stopped until an operator
removes the blocking item. A “feeder jam” error together with a “conveyor stopped”
messages might be generated. Each time an errors occurs it is logged into a log file

including the duration of that event.

For safety reasons operators or any other object are not allowed within certain
sections of the machines (they have proximity sensors in those areas). When those
proximity violations occur the machine stops and logs an event to the log file. The
other major problem which affects these machines is sequencing errors. Sequencing
errors occur when an actuator fails to receive a mail item within a specified amount
of time. Sometimes more than one mail item try to go past the optical scanner. By
measuring the thickness (items are not allowed to exceed certain thickness) and
weight of the “item” the machine can easily determine that there is more than one
item. Other errors happen when the printer happens to be offline when the mail item
is about to be bar-coded. The FMOCR machines have more than 200 different types

of errors some of which are subsets or combinations of the ones already mentioned.

10

3.1 Event logging

The FMOCR mail sorting machines are interfaced to personal computers running
Microsoft Windows NT. Events are logged to the host computer through an RS232 serial
port “as they happen”. When there is a mail jam, for example, a jam related event is

sent to the computer for logging including the duration of that event.

Every morning the mail control computer (MCC) connects to the cenftral log
server using the file transfer protocol (FTP) and uploads the previous day’s log file. It is
convenient to upload the log files in the morning because that is the time when the

machines are usually idle.

m—at

N\
/Central Log Server
| ——

Mail Control Computer (MCC) Mail Control Computer (MCC) Mail Control Computer (MCC)

) t i

FMOCR FMOCR FMOCR

Figure 1- Event logging and central log server relationship

There are plans for the FMOCR events to be logged in “real fime” to a remote
location, the central log server, in the future. This will enable events to be included in
reports as they arrive instead of waiting for the mail control computers to send events

in batches each morning.

11

4 Mail sorting challenges

The operation of mail sorting centres brings about many challenges arising mainly
from the volume of mail processed and the need to deliver it on time. Australia Post is
under government obligation to deliver mail on time 94% of the time. External auditors
(KPMG) enforce this requirement by sending mail at random times from random
locations to see if it arrives on time. Malfunctioning mail sorting equipment can delay
mail delivery and affect businesses that depend on mail being delivered on time.
Jammed sorting machines can cause backups in mail centres and require labour

intensive hand sorting to clear the backlog.

The main challenge is to figure out how to make better use of all the log files
generated by the mail sorting machines in order to better anficipate problems before
they happen thereby increasing efficiency and saving costs at the same time.
Sometimes technicians might want to know what stopped a machine at a certain
date and fime. They might also want to know what other events happened before
the event that impaired the machine. Without log files it would be very difficult
leaving them having to rely on machine operators having to remember what

happened that day.

Another challenge is that even if the log files are available they are not of much
use if they are not properly managed and if there is no infrastructure in place for you
to quickly and easily get the information you are after. For example, if it takes an hour
to go through the log files to find the information you are after the machine may have
to remain idle during that period bearing in mind that some of these machines have
to process more than 28,000 pieces of mail per hour. The aim is to spend more fime
repairing the machine than to finding out what went wrong hence optimising
downtime. The mail sorting machines cost hundreds of millions of dollars so from @
management point of view they need to find out if they are being fully utilised. One
way to find that out is to compare the uptime versus downtime. Without appropriate
event logging and a mechanism to analyse that information this becomes an
enormous challenge. Management are also interested in knowing which mail centres
might need more sorting machines to handle the ever increasing amount of mail they

handle. Without proper statistics this again becomes a difficult task to achieve.

12

5 Project Objectives

Australia post prototyped its infrastructure on its Flats Multi-line Optical Character

Recognisers (FMOCR) and wrote a parser to bring FMOCR Event data into the ULS

data-store and several web based tools for undertaking simple analysis of that data.

Before this project started this infrastructure was in its infancy and needed more work

done on it.

The following is the list of project objectives which needed to be achieved:-

o}

O

O

Improve or re-write the log frend reporting tool

User Interface improvement

Several enhancements to search facilities

Technical improvements to enhance the accuracy of the FMOCR data in
particular

Improvements in data store to improve web server response fimes

Addition of several new analyses and improvements to presentation
Architectural and detailed design documentation

Design and implementation of user help and user manual

Log file information restructuring to align to 6AM-6AM day

Capability to directly request a graph for a particular date using the trend form
Cache data on web server to eliminate network latency

Upgrade web server speed to run analysis scripts faster

Data quality improvement

Include new analysis methods including having log reports by criticality
Implement hierarchical relationship analysis

Implement email reports and alerts

Implement machine comparison analysis

New features intfroduced by this project are discussed in section 5.2 whilst

improvements to the prototype are discussed in section 5.1

13

5.1 Improvements to the original prototype

Improve or re-write the log trend reporting tool

The original tfrend tool (known as fmocrirend in the prototype) is the main program
responsible for reading the log files, analysing them and finally utilising a graph
plotting utility (Gnuplot) to graph the data. To implement the required enhancements
to requires re-writing or modifying the prototype tools. These enhancements include
the ability to accept multiple search strings, reading search information from a file

and the ability to accept search strings with spaces in them.

User Interface Improvement

The user interface needs improvement to make it easier to select trends from the log
report page. There should be a way to present to the user choices of key values
applicable for the field selected (on the trend page). Improvements should be made
to the FMOCR tools web side to make access to information as straight forward as

possible.

Enhancements to search facilities

Some of the enhancements include multi keyword searches and the ability to type in
a more descriptive search rather than a one word search. For example, it is desirable
for the users to type in “Shuttle Jam” instead of just “Shuttle”. Users should also be able
fo use multi-field searches. For example, they should be able fo search by event
module, event time and event date. There should be quick links for searches that
users usually require. A link to top 10 stop events for yesterday or last week is a good
example of such a link that would enhance the functionality. Users should also be
able to define a collection of queries and put them in a file that can be processed as
a batch.

Make the section Index more intuitive
The objective is to allow the user to enter embedded spaces in trend query key values.
The query “Shuttle Jam™ is more intuitive than just “Shuttle” and the user should be

able to get more accurate results that way.

14

Technical improvements to enhance the accuracy of the FMOCR data
This involves sorting the problem which currently happens when a “stop time” overlaps
info the “start fime". The idea is fo mark such log entries as unreliable so that it will be

up to the user to decide to incorporate them or discard it.

15

5.2 New features added to the prototype

Architectural and Detailed Design Documentation
There was a need for detailed documentation of the log tools design and
implementations including the current ULS prototype with the aim of making it easier

to understand, add more features as necessary and correct errors if they arise.

Design and implementation of user help and user manual
A simple and intuitive help manual was to be written. It was also desirable to have a
simple search facility in the help manual together with a link to frequently asked

questions and a quick guide.

Capability to directly request a graph for a particular date using the trend form
After enhancing or re-writing the trend tool it should be possible for users to search for
a graph from a particular day. Prototype implementation currently allow users to

request tfrend graphs for current day, week, fortnight, month and two minutes only.

Data Quality Improvement
Prime parser with previous day's data and determine open events at the end of the
previous day. Allow durations to be calculated for events open at the end of the

previous day.

Reduce ambiguity of event data

Currently, bad records are indicated by an exclamation mark in the duration field but
the duration is specified to be a floating point numeric field in the universal log file
format specification. There needs to be another way to flag an incompletely written

record other than violating the file format specification.

Upgrade Web Server Speed to run analysis scripts faster and cache data on web.

The web server was to be moved to a computer with faster processing speed and the
log files were to be cached on the local web server instead of the current file server
for faster execution. This was to ensure that only new files were copied from the file

server when the tools are executing thereby reducing network traffic.

16

New Analyses
The objective is to have a report by criticality and count or duration and specific
operationally targeted reports, for example “Feeder Jam Reports”. Users should also

be able to define their own report requests.

Machine Comparisons

It was suggested that a daily comparison for all events that meet a suitable criteria
should be automatically generated everyday. This was already being done manually
but needed to be done here as either an "on demand" report or a daily pre-
generated one. The criteria for events to make it to this report were to require input

from the users.

Email reports

It was suggested that we could produce a standard set of reports (the log report for
yesterday, for example) each morning and e-mail to users. In addition to the daily
standard reports, users needed the ability to define specific events they are interested

that would also be emailed to them.

Email alerts

It has been suggested that if during morning processing we detect that something
significant has happened that we send an email alert to a site nominee. This is much
more difficult than e-mail reports because it is necessary to establish thresholds for

deciding when something is significant.

6AM-6AM alignment

It was suggested that the tools align log processing to the 6AM-6AM reporting periods.
This has the undesirable side-effect that reports can not be generated until at least
6AM local time. The problem was apparent when getting log files from Perth where
the log files could be as late as 9AM in arriving at the log server during daylight saving
in the eastern states. Such a change could adversely affect many users. Maintenance

and headquarters users will be affected the most by such a time alignment.

17

6 Anticipated project outcomes

The following were the original anticipated project outcomes.

o Highly responsive and easy to use logging system

o High quality log information

o Ability to predict future problems based on current log information

o Detailed Design Documentation thereby enabling other machines to be easily

incorporated into the Unified Logging System

6.1 Anticipated value of the project

The overall objective of the project was to improve the reliability of the mail sorting
machines. It was hoped that the completed project would result in quality log
information being readily available. This information could be used for a number of
purposes but mainly to improve the efficiency of Australia Post’s mail sorting machines.
The data from the files could be used for planning purposes including trying to predict
when problems might occur so that in the eventuality of such a case the right people

will be well prepared to deal with the problems.

6.2 Actual project outcome

All of the objectives were met except for three. The explanation is given directly
below for these three. The functionality of the rest of the objectives which were met

will be discussed in chapter 8, Project Outcome and Functionality.

6.2.1 Technical improvements to enhance the accuracy of the FMOCR data
The solution required the cooperation of the manufacturer of the FMOCR mail sorting

machines as it requires a review of how the data is logged. Some of the machines are
stil under warranty which means only the manufacturer can rewrite PLC
(programmable logic device) programs to address the issue. We could not arrange

the cooperation of the manufacturer in a timely manner.

18

6.2.2 Log file information restructuring to align to 6AM-6AM day
The idea of aligning log file information between éam and épm was abandoned

because of logistic and practical reasons. Most of the fime technicians do
maintenance work very early in the morning well before log files arrive from mail

sorfing centres.

6.2.3 Implementing hierarchical relationship analysis
Sometimes machine errors are related, certain events happen just before a series of

other events happen. The idea of implementing a hierarchical relationship was to
automatically link events when the user does a query so that they are presented with
related events that happened before the event they selected. The FMOCR machines
can generate more than 200 different error messages. It was quickly realised that
there are too many permutations. Furthermore, information regarding the relationship
between all linking events was note readily available. It still could be done, but as a

separate project. Perhaps this was being too ambitious.

19

7 Research Methodology

The research involved fully understanding the current prototype and how the mail
sorfing machines work in general. The other part of the research involved a through
comprehension of C/C++, GNU/Linux and Bash Shell programming literature in order
to evaluate how best it could help with the implementation of the logging system
since the prototype was based on these. Since the whole project was to be
implemented using open source tools more research was put into them particularly
the use of Gnuplot used for graph plotting and curve fitting. Research was also done
on the use of using the g++, the GNU/C++ compiler, particularly on how to optimise
programs written in C++. Program profiling was researched with the aim of finding
bottlenecks in algorithm execution and improving on those. Securing and optimising

the Apache web server was also researched.

Extensive use was made of the Internet ranging from research on mail sorfing to
optical character recognition. The research also focussed on visiting the actual mail
centre to see the FMOCR machines in action. It also involved interacting with Australia
Post mail sorting employees with the aim of acquiring more knowledge of the mail
sorting process and typical problems the mail sorting machines encounter. Finally the
FMOCR machines come with extensive documentation on compact disc which was

also used as part of the research.

20

8 Project outcome, functionality and value

8.1 Project Value

Australia Post can now use the information retrieved from the log analysis tools
created by this project to improve its mail delivery across Australia. It now has a better
ability to anficipate certain problems thereby reducing down time, cutting costs and
improving the mail delivery service along the way. Australia Post now has an
infrastructure in place to store and retrieve mail sorting machines’ error messages in

an easy and productive way.

8.2 Project Functionality

The project consists of programs written in C/C++ which interact with the user
through web pages. A tool called fmtrend accepts user queries then reads
appropriate log files, plots a trend graph and then displays, to the user, the total
number of records found, their duration, the unique records found, the total number
of files included, the time it fook to generate the report and more importantly a tfrend

graph. Examples of such a graph will be shown in the sections below.

Fmreports was developed specifically for generating reports that will be sent to
users by email. It takes a number of arguments including the ability to read user
specific watch lists. Watch lists are lists of error messages the user is interested in. Other
tools are “helper” tools to the above mentioned tools (fmtrend and fmreports). For
example, a tool called fmproc takes the name value pairs from a form query and split
it into its constituent parts. Most of the project functionality can be better understood
by reading the user guide in the appendices section of this document. The following
sections are summaries of what the specific tools developed for this project do. A

technical description of the tools is in the detailed design section of the appendices.

21

Improve or re-write the log trend reporting tool

The original prototype did a good job but in order to implement the required
functionality it had to be rewritten completely because of the limitations it had. For
example, it could not handle phrases as search strings very well (it was limited to using
single word queries). Furthermore it had no ability to handle multiple search strings.
The new tool is faster than the prototype. Large queries which used to take closer to
120 seconds can now be performed well under 15 seconds. The tool now performs
queries on all different aspects of the log file (date, duration, event text, module, etc)
and these fields can be combined to help produce better results. The tool now
handles invalid data and illegal input better with the ability to explain to the user if
there are errors with their input. A good example is the ability to report to the user that
a log file is missing and therefore the events in that file will not be included in the

report. Empty search fields are now being handled appropriately.

User Interface improvement
The user interface was improved and it now allows the user fo enter more than

one search string. The diagram below shows the new interface for the fmtrend tool.

Machine Number: | 701 x| Period: | DAY | Plot Interval: | DAILY ~|

Field: I 7:Event Text | Search String;: INDNE

Field: I 7:Event Text v| Search String: INGNE

Field: I 7:Event Text ~| Search String: INDNE

User Name: Iglubal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 2 — New user interface

It is now easier for the user to select the machine they are after, the period (day,
fortnight, month or as far back as they system has log files for) and the search fields
they want. A detailed explanation of how to use the new interface is explained in the

help section of the appendices.

22

Enhancements to search facilities

Besides allowing multiple search strings to be included in the query as shown in
Figure 2 the system now allows the user to use phrases and watch lists. Instead of
querying by a single word like “Shuttle” a user can now specify that they want shuttle
jam errors by typing in “Shuttle Jam”. This allows the user to use more descriptive
search strings and they also get more accurate results that way. By meeting this

objective, the project objective “make the section index more intuitive” was also met.

Addition of several new analyses and improvements to presentation

The reports and trend graphs are now presented in a clear form. For example,
the tfrend graphs now include a moving average line (see user guide). The reports are
also being more clearly formatted with the aim of making them easy to pick up
essential information. For example, the grand totals on machine comparisons analysis
are shown in bold. Histograms are used to give a graphical comparison of machine
performances. New analysis includes the ability to search all events within time or
duration periods. For example, you can now search for all events whose duration is
between 20 seconds and 56 seconds inclusive or all events that happened between
2334HRS and 2356HRS.

Architectural and Detailed Design Documentation

The appendix section “detailed design” contains a copy of the design. C++
classes and their methods are clearly explained. Source code is heavily commented
so as to form part of the documentation as well. The design documentation should
make it easier to extend the functionality of the log analysis tools. There are a lot of
reusable functions. These will be useful when the other machine types like the
Spectron machines (used to sort smaller mail pieces) are added to the unified logging

system.

23

Design and implementation of user help and user manual

The user guide was developed as per “User Guide” appendix. An html version
was also developed and deployed on the web server so as to have instant access.
The user guide was deliberately made easier to allow users with limited computing
knowledge to easily follow the instructions. The help guide consists of several
graphical illustrations that users can relate to whilst learning how to use the system.
The html version of the user guide consists of an easy to use navigation structure. A

copy of the html guide is on the compact disc accompanying this project.

Cache data on web server to eliminate network latency

The web server from which the log files tools run from is not on the same
computer used to deposit the log files each day. The log files are now cached on the
GNU/Linux web server as compared to being accessed from the log file server. A
typical search can include 30 files each of about 3 megabytes totally to about 90
megabytes. This amount of traffic can have a big impact on the time it takes to return
search results. By meeting this objective, the “Improvements in data store to improve

web server response times” objective was also met.

Capability to directly request a graph for a particular date using the trend form

The fmtrend tool can accept files from any date and is therefore able to
perform a trend for any date. As per the user guide, all the user has to do is to select
the date field from the drop down list. Getting a trend graph is useful for a couple of

situations especially when trying to predict future problem:s.

Upgrade Web Server Speed to run analysis scripts faster

The web server from which the unified logging system tools run from was
successfully migrated from a modest Intel Pentium 75MHz processor based computer
with 128Mb of RAM to a more powerful computer with an Intel Pentium 2.8GHz
processor and 1Gb of RAM running the GNU/Linux operating system. When
performing queries which involve large amounts of log files and multiple search strings
a lot of RAM improves performance. All the files from the old web server were
successfully copied to the new system and the web server response time was very
significantly improved. More users can now perform complex queries at the same time

without a significant performance degradation.

24

Include new analysis methods including having log reports by criticality

Events can now be analysed by criticality by
the drop down menu as per user guide instructions.

events they are interested in and put them in a file

selecting the criticality field from
Users can also define the critical

called a watch list and have the

system email them reports based on their watch lists. There is also a quick link for

obtaining the top 10 or top 20 critical events for any day. A machine comparison

analysis can also be performed on these critical events.

Implement email reports
Users are now getting reports mailed to

instructions explaining how to request these reports.

them. The user guide contains

The figure below shows a sample

email message generated by the email reporting tool.

robert.lunnon@auspost. com. au
mukanya@bigpond. com

From:
To:
(=

Subject: FMOCR Report

Sent: Thu 25/11/2004 9:37 AM

Event description 701 702

CTUM 230V circuit breaker tripped

CTUM Dizplay left ride - DCAL Communication error
: Buzy

: Dizabled

: Disconnecte

: Started

Started

148 143

148|144
Events by duration.

Event description 701 702 703

CTUM 220V circuit breaker tripped

CTUM Dizplay left side - DCAI Communication error
: Busy

: Dizabled

- Dizconnecte

- Started

Started

305. 431.2

0.1

395.7 226.6 441.9

Events Total B

1l

05 706 707 08

Freguency/Count

H

703

il
v R

Fid

703

291

Events by count/frequency. 24-11-2004

704 705 (T06 707 708 Total

2l
1234

478 |186
24-11-2004

265 1970

704 705 706 707 708 Totals (mins)

0.0
0.0
2.2
B306.1
16.7
0.0
0.0

9222 |1465.3 1694.0 |607.2 3662.0 8414.9

0.5
020.3
1.3

1485.3 §00.8

Ouration Total

Ouration Total

|-|.—.|‘||_|H|_|I_|

ol oz Fos wd F05 0 Foe 07

F05

Figure 3 - Sample email report

In the figure above the user had defined the events they are interested in, as per the

event description column, and put them in a watch |

25

ist. The email report consists of a

two tables, one for the events frequency and other for the events durations totals,

and the corresponding machine comparison graphs.

Implement machine comparison analysis

Machine by machine comparison is how possible. The following figure shows a

typical result.

FMOCR Home Stop Events |[Impair Events [non Feeder]

Comparison Graphs

1068

gae - I I I I : E|.|'£:ntsI Total ===

8oe -

7oe

G6aa -

5808 -

4808 -

388 -

208 -

188

o Q|

o o w T '}
= = = = =

Hachine Number

Frequency/Count

Fo6

1208 . : : . . —
Events Duration Total
1888
888 -
G6aa -
488

288

Durations Totals

702 [
7es [

701 ||
704
705
706
707
708

Hachine Number

Figure 4 - Machine Comparison analysis

The above graphs show a comparison of each of the mail sorting machines by the
number of errors and also by the duration of the errors. For example, a quick look at
graphs reveals that machine 701 was the best performer on this day. It can also be
seen that although machine 708 had relatively few errors, its duration totals’ are the
highest. The user guide has further information about these comparisons. The tools also

show the figures used to generate this report.

26

9 Lessons Learned

When | started this project | had a pretty good idea of what to expect but | did
not expect it to be this entertaining. The most fascinating thing was to realise that my
solution was improving mail delivery throughout Australia. | learned how to implement
an industry project from gefting the specifications through to implementing the
solution. | encountered a lot of problems, particularly the way specifications are

always changing, and | learned how to adapt.

| learned how to improvise when computing resources are limited. | especially
learned that a computing solution does not always need more powerful hardware to
be thrown at the problem but rather more efficient algorithms and planning can

achieve the same if not better results.

| improved my technical skills. | can now use C/C++ to solve practical problems
better than | did when | commenced the project. | also improved my knowledge of
GNU/Linux and open source software as the project solution was implemented on
GNU/Linux and utilised open software utilities like Gnuplot. | also learned how fto be

both an active team member and also work independently.

9.1 Problems faced

The main problems faced were the fact that the project had to be completed
in short period of time and | had to work on a production server. The limitation meant
that | could not do as much testing of the tools | was developing as | wanted and it
also meant that | could not make the user interface as presentable as | wanted.
Working on the production server instead of a development computer meant that |
had to be extra careful which | meant | could not experiment with other
implementations freely since any mistake could have taken the server offline. Finally a
minor problem | faced is the lack of Internet connectivity | had during the day (at
night | had connectivity at home) which limited my research capability especially the

inability to use Internet search engines to solve small problems.

27

10 Future improvements

There are a couple of areas that have potential for improvement. Firstly, |
recommend moving the log file information to a relational database. This would result
in a small performance overhead (it is quicker to read the log files directly than
through a database) but the advantages include having an easy backup system and
the ability to do advanced queries since relational databases were designed for

queries.

It would be useful to have the amount of mail that each mail sorting centre
processes to be included when doing machine comparisons. At the moment the
comparisons only tell you the number of faults and their total durations. To do a fair
comparison of mail centres the total quantity of mail processed during that time
should be included in the equation as well since some centres handle more mail than
others. Finally, it would be helpful to have a technician select an error message and
suggest how to solve the problem presented to them. This would require help from

someone who has considerable experience with mail sorting machines.

28

11 Conclusion

Mail delivery is a complex and challenging business which is constantly meeting
new challenges as the amount of mail to be delivered increases. Australia Post
technicians and management can now use the valuable information from the mail
sortfing machine log files to improve mail delivery in Australia. Information about mail

sorfing machines’ faults can now be used in an easy and infuitive way.

Management can now have a quick overview or detailed information about
machine performances with the aim of improving mail delivery and cutting costs. | am
confident that the work | have done will help Australia Post to confinue and to

improve its “on time mail delivery” policy.

29

12 Glossary

OCR: Optical Character Recognition.
FMOCR: Flat Mail Optical Character Reader
RAM: Random Access Memory.

Mb: Megabytes

GB: Gigabytes

CGIl: Common Gateway Interface

More glossary terms are in appendices sections of this report.

30

13 References

[1] [Rangachar Kasturi, Lawrence O'gorman, Venu Govindaraju], “Document

image analysis: A primer” Vol. 27, Part 1, February 2002

[2] Homayoon S.M. Beigi, “An overview of handwriting recognition”, Proceedings
of the World Congress on Automation, Montpellier, France, May. 27-30, 1996.

http://www.internetserver.com/~beigi/homayoon/conference.html

[3] Giovani Garibotto, “Computer Vision in Postal Automation”
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/ECVNET/Postal.Auto

mation.ntml

[4] “History of the U.S. Postal Service, 1775-1993 Postal Mechanization/Early
Automation” http://www.usps.com/history/his3_5.htm

[5] “Optical character recognition”

http://www.webopedia.com/TERM/o/optical_character_recognition.html

[6] iiOCR”
http://searchsmallbizit.techtarget.com/sDefinition/0,,sid44_gci214132,00.html

[7] “OCR Basics”

http://www.ocr-systeme.de/englisch/ocrallg.htm

[8] "MQC - Chapter 7 Non-automation Mailings”
http://pe.usps.gov/mpdesign/misc_docs/mqgcHTML/mqgc_7.htm

[?] “Designing Letter and Reply Mail”
http://pe.usps.gov/text/Pub25/Pub25ch1.htm

31

14 Appendix A - User guide

1.0 INErOdUCEION cauucneeeineintiiniiitecnecsticsneisnecseissesssessssssssessssssssessssssssnssssssssesssassssssssassssassnns 33
2.0 Summary of what can be done 33
3.0 The RIS Web Site.....cueiiviineiisiisiiiseinsninsniiseisssinssnesssessssesssnssssssssessssssssesssssssssssssssssasssens 33
4.0 FMOCR TIENAS .cccuueierurinsnrensnrcssnncssnncssssecssssesssssessssesss 34
4.1 HOW t0 €t @ trENA? ...ttt ettt ettt ettt 34
4.1.1 Select MAChINEG NMUMDETcccuiriiriieiieieiieeee ettt 34
4.1.2 Select trend PEriod........coueruieriiriiniiiieieet ettt 35
4.1.3 Select Plot INTEIVAL.....cccuieiiiiiieiiecieeiee ettt st et e et seseenree e 35
4.2 SInGle QUETY TNooveiiiiiiiiiiiieieet ettt sttt 35
4.2.1 Event TeXt Nc..coiuiiiiiieiieieeieseete ettt sttt 36
4.2.2 Event TYPE trNdcooiuiiiiiiiieeiiee ettt ettt sttt 36
4.2.3 QUErY DY MOAUIC.......eieiieiiieiieiecieece ettt et et entaeeeae e 36
4.2.4 Query by MmOdule IDcooiiiiiiiieie e 37
4.2.5 Event DUration trendcooeerierieniieieeiesieeie ettt sttt 37
4.2.6 Event criticality trendcoouiiiiiiiiiiiee e e 38
4.2.7 ITMPairment treNdcccueeiuiiiiiieiieeie ettt esee et e eae et eebeesraeesbeensaeeraeseneenne 38
4.2.8 Event time trendcociiiiiiiiiiiiieie ettt sttt et 39
4.3 WatCh TSt QUETY ..eoeueiieiiiieciie et ettt ettt e st e st e e ebee e eaneeesnneeennseas 40
4.4 POTINES TO O ...eeutieiitieiieeittestie ettt ettt e et e bt e et e et e s et e ebeesaaeesseesnbeeabeesaseenseesneeenseesnseenne 40
4.5 Multiple QUETIES trENAeeveiiiiieiieeiiecie ettt et e s e e beesaaeebeeseneenseeenseenns 40
4.5.1 EXAMPIES ...ttt ettt sttt et et ente e 41
4.6 Sample trend Graphis.......cc.eeiiiiiiiiieeii et et ebe e eens 42
5.0 FMOCR LOZ REPOTt...cueicisreicissercsssnnssssnnsssasssssasssssassses 44
ST WED REPOTES ..ccuuiieiiiiiiieiiecie ettt ettt ettt st e e e s eb e e b e e sbeenbeessseesbeessaeensaensseenseensnas 44
S.L.1TOP 10/20 REPOTT .ttt ettt ettt et 44
5.1.2 Watchlist Report for Yesterday or any day.........ccccceeviieeiieniieeniienieceeeieeeeee e, 45
0.0 WALCh LSS c.uuueinuiiiiiiiiiiitiiniicniintinneisnecsneinsisssesssseessessssessssssssesssasssssssssssssssssassssassssssssass 47
6.1 Registering for WatCh 1SSoiiiiiieiieciiececeeeeee e e e 47
6.2 Creating or editing WatCh LIStS.......cc.eriiriiiiiiiiicereeeee e 48
7. 0 EMAil REPOITS ccccuueriiiniiisnnicisnicsinicssnicssnicssssecssssecssssessses 52
7.1 Email 1eports — TOP EVENLS......cooiiiiiiiiieiieeeee et 52
7.2 Email reports — Watchlist COMPATISONccuieevieriieiiieiieeieeiie et esiee et siee e 53
7.3 Email reports — Watchlist Graph..........ccocueieiuiiiiiiiiiiiccieeeee e 53
8.0 Daily FMOCR Reports - Histograms 54
0.0 GlOSSATY c.ceuurriernressnncssnnesssnessssnessssncssssssssssssssssssssssssssssesssssssssssssssssossssssssssssssssssssssssssnsssses 58
2.1 Example FMOCR 10Z ©NLIYoiiiiiiiiiiiieeiieiieeieee ettt ettt st 60
6.1 Fmtrend UsSage SUMMATY:oeeeiiiiiiieeiiieeieeeieeeeieeeetreesteeesaeeesssaeessseeessseessseessseeanns 62
IMAKETIIES «ouueeeinreeiniiiineiininteinintensteecsnnecssnnesssnnecsssnessssessssnessssesssssesssssesssssessssssssssssssssssssssassss 80
TESTINE «eveeererresssrnesssrnesssnnessnnessssnessssnosssseossssesssssssssssesssssssssssesssssssssssssssssssssssssssssssssssossnsssssnsssses 81
GlOSSATY couuueeriirisnniicsssnnncsssssnsncssssassesssasss 81

32

1.0 Infroduction

Each day the Network Engineering Unit (NEU) collects the HMI log files from all FMOCR
machines nationally and processes them into an Excel compatible form suitable for
undertaking analysis work. The system has been recently enhanced to provide simple
but very powerful analysis work including automatic daily emails, frend graphs, top 10
or top 20 events for any day, machine to machine comparison histograms. The
interface is deliberately very simple and is accessible for any web browser within the
Australia Post Intranet.

2.0 Summary of what can be done

o Setup awatch list of events that are of interest to you and have a report emailed
to you daily

o Get trend graphs based on your chosen search criteria including criticality, event
text, impairment or durations

o View daily summaries of stop events, impair events (non feeder) and impair events
(feeder) from the FMOCR web site for all the machines including comparison
histograms

o View yesterday’s (or any day for that matter) top 10 or 20 stop, warning and impair
events for any machine or all the machines. You can also choose to sort events by
frequency or by duration. You can also use watch lists you have set up as your
search criteria instead of stop, warning or impair.

3.0 The RIS web site

The Reliability Improvement Section (RIS) web site found at
http://dpu/neu/ris/RISIndex.html is your first point of contact with the FMOCR log tools.
From that page select the FMOCR link as shown by the snapshot below in figure 1.

RIS - Reliability IImprovement Section

3309 Logan Road Slack's Creek - (07) 3247 2000

NEU Home
_ [\I]PE
L h I Spectrum 10 Machines
Search: I
Desiyn Review Team Site: (Qld - RIS official info)
© Ris © Qud ¢ Nen _co |
Lodge A Change Proposal (Not Activated Yet) Barcoder Machines

Figure S - RIS main web page snapshot

After selecting the FMOCR link you will be presented with further options, frequently
asked questions, FMOCR log reporting, FMOCR trend graph, Daily bar graph
comparisons, FMOCR documentation and Information. The figure below shows a
snapshot of the FMOCR web page.

33

Frequently Asked Questions Daily Quick Summary [Bar Graphs]

Do an FMOCR Log Report FMOCR Documentation

Do an FMOCR Trend Graph Information and Hints & Tips

Figure 6 - FMOCR main web page snap shot

The rest of this document illustrates how to use each of the options described above.

4.0 FMOCR Trends

The FMOCR trend tool allows you get a quick snap shot of a machine’s activity from
today going back to a specified period of time. You get a graph illustrating events per
hour or per minute, together with the list of the actual events which happened during
that fime. You also get to know the durations of those events.

4.1 How to get a trend?

4.1.1 Select machine number

The first step in getting a tfrend is to select the machine you want the trend for.
Currently the machine numbers are 701, 702, 703, 704, 705, 706, 707 & 708 respectively.
Another option is to include all the machines in the trend by selecting the option “ALL".
Figure 3 shows the typical form you will see on the FMOCR web site. In this case, to
select the machine number just click on *701" and you will be presented with further
options.

Machine Number: | 701 | Period: | DAY | Plot Interval: | DAILY ~|

Field: I 7:Event Text | Search String: IN{)NE

Field: I 7:Event Text | Search String: INONE

Field: | 7:Event Text x| Search String: |NONE

User Name: Iglubal Watch List: INDNE

Click submit to generate

SUBMIT |

Figure 7 - FMOCR trend form

34

4.1.2 Select trend period

After selecting the machine number you then have to select the trend period. You
can do a trend for a single day (yesterday's frend), week (last seven days), fortnight
(last 14 days), two minutes, month (last 30 days) or “*ALL". “ALL"” means you want to
include all the available files. Depending on the number of files currently on the server
this could be as far back as 3 months. As per Figure H1 above click on “DAY"” and you
will be presented with all the available options

Please be patient when you select the options “MONTH"” and “ALL" since the program
will have to read between 28 and 20 000 large files.

4.1.3 Select plot interval

The plot interval can either be “"DAY" or YAUTO". The plot interval allows you specify
how frequent you want to see the changes on the graph. For example, if you had
previously selected a period of “MONTH" the plot interval of “DAY” will allow you to
see the machines performance per each day more clearly. Leaving the default value
of “AUTQO" is usually sufficient. For obvious reasons, using a plot interval of “DAY” when
you had previously selected a trend period of “DAY" will result in the system defaulfing
to "AUTO", which is a two minutes interval in this case.

4.2 Single query trend

The program allows you to do a simple search by first selecting the search field and
them typing in your query. For example, to search for all events involving “Jam” simply
select field “7: Event Text” from the drop down box as shown on Figure H1 above. You
can even include a phrase as in “Shuttle Jam”. Also see the section on full phrases
later in this document to find out more. You can do simple things like finding all events
which exceed a certain duration by first selecting “12: Event Duration” and then
typing in “10+"” in the search string field, for example to find all events which exceed
10 seconds in duration. Table 1 below shows a summary of the search criteria. Each
search field will be discussed further in the later section of this document.

Search field Description Example search siring
1:Date The date the event happened 01-11-2004
2:Time Time interval for the events you 2:30-20:23

are after
3:UID Query by event unique identifier | 715387989
4:Machine Type Distinguishes FMOCR from other | 7

machines (currently not

necessary)
5:Machine ID Same as Machine Number. Not | 701

necessary at this stage
6.Event Type Common event grouping Jam
7:Event Text Description of an event Shuttle Jam
10:Module Module name Stacker Feeder
11:Module ID Module Instance ID 3
12:Event Duration Duration of event in seconds 10+ or 156- or 23:88
13:Event Crificality Indicator of criticality of event Impair
14:Impairment Estimate of machine impairment | 33

as a percentage

Table 1 - Possible search criteria summary (shaded fields are currently not necessary)

35

4.2.1 Event Text trend

An “Event Text” is a machine specific text relating to an event. Examples include
“BCPI: Imaje-Printer sends unknown data 1;0” and “ETS-IU4: Conveyor light barrier
error: conveyor segment 1”. To query by event text you can type in a single keyword
from the event text or to get even more accurate results you could type in the whole
phrase as in “Shuttle Jam” instead of just “Shuttle”. The figure below illustrates this
procedure.

Machine Number: | 701 x| Period: | DAY | Plot Interval: IAUTO =
Field: I 7.Event Text j[Search String: Ijam feeder]

Field: | 7:Event Text _~| Search String: |NONE

Field: | 7:Event Text x| Search String: [NONE

User Name: Iglabal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 8 - Query by Event Text

4.2.2 Event Type trend

An event type is a grouping of common events as in “Jam”, “Timing” or “Power”.
Make sure you select “6: Event Type" from the search field and then type in the event
type you are after in the search string field. Figure 5 below shows an example.

Machine Number: | 708 | Period: [MONTH . | Plot Interval: | DAILY ~|
Field: | 6:Event Type »| Search String: I'I'iming

Field: I 7:Event Text j Search String: INONE

Field: | 7:Event Text »| Search String: INONE

User Name: Iglubal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 9 - Query by Event Type

4.2.3 Query by module

This is for use with module names like “Reader”, "BarcodePrinter”, “TLM" or “ACS-
Shuttle”. The query procedure is similar to the ones already discussed above. Make
sure you select “10: Module” from the search field first and then type in the module
you are after in the search string field. Figure 6 below shows an example.

36

Machine Number: | 708 | Period: [DAY | Plot Interval: AUTO : ~|
Field{| 10:Module | Search String: [TLM)

Field: | 7:Event Text ~| Search String: NONE

Field: I 7:Event Text | Search String: INONE

User Name: Iglabal Watch List: |NONE

Click submit to generate

SUBMIT |

Figure 10 - Query by Module

4.2.4 Query by module ID

This is a number representing the instance of a particular module. For example, a
module called TLM might event instances 1, 2 and 3 as in TLM 1, TLM 2 and TLM
respectfully. Make sure you select “11: Module ID” from the search field and then type
in the module ID you are after in the search string field. Figure 7 below shows an
example.

Machine Number: | 701 x| Period: | DAY ~| Plot Interval: | DALY ~|

Field: I 7:Event Text j Search String: INONE
Field{|11:Module ID | Search String: |3

Field: I 7.Event Text j Search String: INONE

User Name: |g|ﬂbal Watch List: |NONE

Click submit to generate

SUBMIT |

Figure 11 - Query by Module ID

4.2.5 Event Duration trend

This is the event duration in seconds. You can search for events which exceeded a
certain time, were shorter than a certain time or between certain intervals. To search
for all events that exceeded 10 seconds (inclusive) you simply type 10+ in the query
string field. Similarly, for all events which where shorter than 48 seconds you simply
type in 48- (inclusive). Finally to find all events whose duration was between 10 and
48 seconds inclusive simply select field “12: Event Duration” and type in 10:48 in the
search string as shown in Figure 8 below.

37

Machine Number: | 701 x| Period: [DAY . »| Plot Interval: | DAILY ~|

Field: I 7:Event Text j Search String: INONE

Field{| 12:Event Duration ~| Search String: Il[}:48
Field: I 7.Event Text | Search String: INONE

User Name: Igl-::-hal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 12 - Query by duration

4.2.6 Event criticality trend

This is a textual indicator of the criticality of the event as in “Safety”, “Impair”,
“Warning” or “Stop” just to name a few. Select the field “Event Critic.” Type in the
criticality you are after in the search string text box. Figure 9 below shows an example.

Machine Number: | 701 | Period: | DAY | Plot Interval: | DAILY ~|

Field: I 7:Event Text _~| Search String: INONE

Field I 13:Event Critic. _~| Search String: IStﬂd
Field: I 7:Event Text | Search String: INONE

User Name: Iglﬂhal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 13 - Query by criticality

4.2.7 Impairment trend

“Impairment” is an estimate of how this event impaired machine performance and is
expressed as a percentage. Select the last field from the drop down list, “14:
Impairment” and type in the required value in the search string. To do a trend of
events with an impairment of say, 33% see Figure 10 below.

38

Machine Number: [701 ~[Period: [DAY | Plot Interval: [AuTo

Field: | 7:Event Text x| Search String: INONE

Field| | 14:impairment ~| Search String: [33]

Field: I 7.Event Text j Search String: INONE

User Name: I-glﬂbal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 14 - Query by impairment

4.2.8 Event time trend

This query enables you to find events which happened between certain times. For
example, it might be useful to find all events that happened between 9pm and 11pm.
This frend is even more useful when used in conjunction with other queries (see the
section “Multiple queries” for more information”). The query format is <start time>-
<end time> where start or end time is in the format hour:minute. To find events
between 9om and 11pm you type 21:00-23:00 Figure 11 below illustrates how to do a
time trend.

Machine Number: | 701 x| Period: | DAY | Plot Interval: | AUTO |
Field: I 7.Event Text j Search String: INONE
Field{| 2:Time

»| Search String: [21:00-23:00
&

Field: | 7.Event Text j Search String: [NONE

User Name: Iglahal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 15 - Query by time

39

4.3 Watch list query

The last single query trend describes the watch list frend. A watch list is a collection of
events you are interested in. See the section “Watch lists” for information on how to
register yourself for watch lists and how to create a watch list. To do a watch list trend
enter your username and the name of the watch list. To illustrate how this works lets
have an example. A user with username called “Anthony” has already registered and
has a watch list called "mywatches” which contains the following contents:-

ctum

shuttle Jam

impair

All they have to do is enter "Anthony” in the username and “mywatches” in the
watch list section. What will happen is that those three items in their watch list (ctum,
shuttle jam & impair) will be included in their trend. Figure 12 shows how to accomplish
this.

Machine Number: I 701 | Period: | DAY | Plot Interval: IAUTO |

Field: | 7:Event Text | Search String: [NONE

Field: I 2:Time j Search String: INONE

Field: | 7:Event Text _~| Search String: INONE

User Name: Ianthany Watch List: Imvwatches

Click submit to generate

SUBMIT |

Figure 16 - Query by watch list

4.4 Points to note

v' You can use spaces in your search strings (i.e. short phrases like “Shuttle Jam”).

v" You can use any of the search field/search string combinations from the three
shown on the form (you don't necessarily have to type in the top one)

v Leave the fields you are not using as “NONE" or empty. Anything else will be
included in your query and may give incorrect results

v" Time queries should be in 24HR notation

4.5 Multiple queries trend

Sometimes you many not only want to find certain events but also within a certain
duration or impairment. Multiple queries allow you such flexibility. The form will allow
you to do up to three combinations at a tfime, in addition to the watch list query. To
illustrate how this works lets do a couple of examples.

40

4.5.1 Examples

Suppose you need to find all “Shuttle Jam” related events that happened between 1
am and 3 am. Type in “Shuttle Jam” in the first search string and 1:00-3:00 in the
second search string and remember to select the appropriate search field as we did
before with the single search trends. Figure 13 below illustrates how to do this.

Machine Number: [701 | Period: [DAY | Plot Interval: [DALY |

Field I 7.Event Text j Search String: IShutIe Jam

Field}| 2:Time _»| Search String: |1:00-3:0Cl
Field: I 7.Event Text j Search String: INONE

User Name: Iglahal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 17 - Multi-field search [2 fields]

Continuing with the example above, let's say we also want to include events which
had duration above 100 seconds, we simply complete the third field and again
remember to select the appropriate search field. See Figure 14 below.

Machine Number: [701 | Period: | DAY | Plot Interval: [DAILY ~|

Field{] 7.Event Text j Search String: Ishutle Jam

Field |2:Time j Search String: |1:00-3:EIU

Field 12:Event Duration x| Search String: 100

User Name: Iglabal Watch List: INONE

Click submit to generate

SUBMIT |

Figure 18 - Multi-field search [3 fields]

Finally, let’s also include a watch list in our search. If you have a valid username and
watch list (see the section on Watch lists if you haven't registered) just type in your
username and required watch list. See Figure 15 below.

41

Machine Number: [701 ~| Period: DAY | Plot Interval: [DALY ~|

eld: | 7.Event Text j Search String: [Shutle Jam

Field: | 2:Time _~| Search String: |l:ClD—3:DEI

Field: | 12:Event Duration | Search String: |ll]0+

ser Name: |ar1thor1',.i Watch List: |m1,.iwatches

Click submit to generate

SUBMIT |

Figure 19 - Multi-field search [4 fields]

4.6 Sample trend graphs
The following screenshot shows the result after searching for events whose event type
is “Timing”. All the three screenshots came from one web page.

FMOCR Trend for 708

Back

Updating Log Files...
Found 1307 matches in 31 data file(s)
Total of Event Durations = 26:47:29

Generated by fmocrtrend - Reliability Improvement Section- NEU

Generated [24 Nov 2004 13:31]

Figure 20 - Sample trend output (Page top)

42

126 —™™M—™————————————————————7——————————————

III:runl.llnt.I

A
= i
] 188 Snoothed ——
o 88 i
[
~ 68
h 48 == 4
-g 20 -
x a L L 1

2 2 2 2

= =] = =

= =] = =

@ - - -

=1 - - -

. . e N

]] o]

n @ - o

Tine {24 hour intervals}

160008 — T
14688
12888
1686888
Gaoa
Ga08
4808
20008

>

B6/11 @800 -[

13711 aeea -
28/11 aaBaA

Duration {Secs)} per period

36/10 0oea

Tine {24 hour intervals}

Figure 21 - Sample trend output (Page middle)

The trend report will tell you how many files when used to generate the report (31 for
thirty one days in this case), the number of matches and the event durations total.
There are two trend graphs. The first graph shows the number of per given time period
and other shows the durations per period. Within each graph there is the
count/duration graph (in red) and the other one which shows a moving average (in
green). Finally the report lists all the unique events which where used to generate the
graph as shown below.

Including Event: CTUM: Timeout gripper cycle

Including Event: CTUM: Timeout at tray roller conveyor 1

Including Event: Shuttle 2: SCT fault; Full cartridge not in time inside exit gate at position 320
Including Event: Shuttle 2: SCT fault; Full cartridge not in time inside exit gate at position 151
Including Event: CTUM: Timeout tray input

Including Event: IDS: Encoder 2 fault

Including Event: Shuttle 1: SCT fault; Full cartridge not in time inside exit gate at position 420

Figure 22 - Sample trend output (Page bottom)

43

5.0 FMOCR Log Report

There are two ways to get FMOCR log reports. The first is by using the FMOCR web
page and the other by creating watch lists so you have the reports emailed to you
daily in the morning. We will look at both in detail in the following sections.

5.1 Web Reports

From the FMOCR web page select “Do an FMOCR Log Report” as shown below in the
figure below.

Frequently Asked Questions Daily Quick Summary [Bar Graphs]
1
[Dn an FMOCR Log Report | FMOCR Documentation
Do an FMOCR Trend Graph Information and Hints & Tips

Figure 23 - Do an FMOCR Log Report

After selecting the "Do an FMOCR Log Report” option you will presented with further
options which are “Top 10 Reports (yesterday)”, “Top 10 Reports (yesterday)”, "Quick
Watch List Report Yesterday” and "Watch List Report For Any Day”. If you don’t have
watch lists already defined the top of the page has a link to the watch list editing
page. More information on creating watch lists is defined later in this document. The
figure below shows a snapshot of the reports page.

Top 10 Report (Yesterday) Quick Watch List Report for Yesterday Waich List Report for Any Date
Stop
Impair Machine No Machine
Waming lﬂ

: Sortby|Count =] | 707 ~|
Top 20 Report (Yesterday) Sort by: m
Stop
Termpai Usemame [global Day: I 10 ~|
DTS aini—
Waming List Name jALL SUBMIT Month: |11 ~|

Year: |2004 =
Convert Upload Data Now
Usemame: E;Iuba]

Machine No:[701 v _stat List Name [t SUBMIT |

Figure 24 - FMOCR Log Reporting

5.1.1 Top 10/20 Report

These options allow you to view yesterday’s fop 10 or 20 events. You can select stop,
impair or warning events. See the glossary section of this guide for a better description
of what we mean by “Stop”, “Impair” or “Warning” events. The figure below shows
typical results from such reports.

44

Log report for 14/11/2004, machine ALL sorted by "Count"

Shortcuts to Sections

B | 2 . g
Stop It[mpalr }Saft:tv bntcr]mk IWarmngs Itlnformatlon IUnknown If[.lnclass:ﬁt:d
| lrn]:_mi.r Count / Total duration (min) f Ave duration (secs)
| Event Count 701 | 702 703 | 704 05 06 707 708
B1ITT 1763498 1124546 843230 DI5369° |P29105.52° |H9 3536 |5230.75
IU2: Jam Feeder 77 fis7er |passe pao7 5.40° 075" H3zg" |as4
B35 [22494 14325 (1264805 (1367525 [10643.13 p72741 663404
IU3: Jam Feeder 6221036 hss3r pasgr [prss’ B3.20° D441 60917 B09F
823526 134279 F23634° |1234760° 10688 612118
[U4: Jam Feeder 421 Dss0" BSIT n028" p322° 405" oSy
Jp23 s [ioses po2es 150 13375 |377.46 13898 |27 1930
e Mgss 704 1685 R4 5349° 1210 45t 28

Figure 25 - Top 10/20 Report for yesterday

Here the results are sorted by count and within each table cell there are other
important statistics as well. Numbers which are green coloured represent the count for
that event and for that machine whilst those which are brown coloured represent
total durations, in minutes, for that event and for that particular machine. Finally, the
purple coloured numbers indicate the average durations, in seconds, for those events.

5.1.2 Watchlist Report for Yesterday or any day

If you have already defined watch lists you can have a quick report for yesterday or
any day for that matter. If you do not have a watch list just leave the username as
“global” and watchlist as “ALL". The figure below shows how to complete the form for
yesterday'’s report whilst figure 22 shows how to complete the form for yesterday.

Top 10 Report (Yesterday) Quick Watch List Report for Yesterday Watch List Report for Any Date
Stop_
Impair Machine No Machine

Warning I 701 j
Sort by ICaunt R |?0? |
Top 20 Report (Yesterday) Sort by: Icgunt |

Sto

]_[J_‘ Username |global Day:ll[} R

mpair ek

Warning List Name AL SUBMI | Month: |11 ~|
Year:| 2004 ~|

Convert Upload Data Now

Username: [global

Machine No:l?[}l | st | List Name [ALL SUBMIT |

Figure 26 - Quick watch list report for yesterday

For a watch list report for yesterday select the machine number or YALL" to include all
machines in your report. The next step is to choose the sort type. You can have your

45

results sorted by duration or by frequency or if you prefer you can retrieve the raw
data so you can use a spreadsheet program to sort the results yourself.

Top 10 Report (Yesterday)
Stop_

Impair
Warning

Top 20 Report (Yesterday)
Stop.

Impair
Warning

Convert Upload Data Now

Machine No:|?01 | sta |

Quick Watch List Report for Yesterday

Machine No
| 701 7
Sort by I Count ~|

Username [global
List Name [ALL

SUBMIT |

Watch List Report for Any Date

Machine

707
Sort by: |C0unt
Day:|10 J
Month: |11 ~|
Year: | 2004 +|

Username: [global
List Name |ALL

SUBMIT |

Figure 27 - Quick watch list report for any day

For a watch list report for any day the procedure is similar to that for yesterday's report
except that you also have to choose a day, month and year.

The figure below shows sample resulfs.

Log report for 10/11/2004, machine 707 sorted by " Count"

‘Shortcuts to Sections

|
Stop hmpair ISafctv It[nfcrlock Warnings ﬂnfc—rmation Unknown Unclassified
| Impair
| More Info _ Event Description Count _ Duration
GllD LLlf LolF hial il (ORI
O G Gu: Cof G)’ . IU3: Jam Feeder 250?]:52:2].??6
GlD LLlf COIF hal Bal, (LT .
0 bt Gt TN Gl . [U2: Jam Feeder 2B501:47:50.222
GlD LLlf COIF hal Bal, (LT | ——
0 ot Gk N e Gl . [U4: Jam Feeder 134_00.59.03.?35
Rl LR EL1F BB LRl (LT o
i mv Gy i) _ Shuttle 2: Gripper vertical drive motor fault: Emor 0 30_0]'40'33‘644
Rl LaJY EL1F RRR LRl (LT .
i mv (Gl i) . Safety relay of shuttle | has tripped " _02.14'4?‘439
] L
o %¢ EE gz EE‘ g—' . Shuitle 1: Gripper command ERROR 78 13:46:47.390
ACKNOWLEDGE failed
I (Y i,
o m¢ WE mﬁ), Shuttle 1: Grpper horizontal drive motor fault: Emor T3112:31:34.542
40

Figure 28 - Quick watch list report for any day sample results

You can view sections of the report according to the links on top of the report ("stop”,
“Impair”, "Safety”, etc) in the yellow cells. From this report we can conclude that the
most impairing event was “IU3: Jam Feeder” which had a count of 250 and a duration

of one hour and 52 minutes.

46

6.0 Watch lists

Watch lists are groups of events which are of particular interest to you. There are many
FMOCR events so it is logical for a user to select only those they require. This gives the
user more useful information instead of getting a report with everything resulting in you
having to spend a considerable amount of time getting the information you want. For
example, you might be interested in “Stop events” only. All you have to do is create a
watch list consisting of stop events. Once such a watchlist list is created you could
have a report based on that watchlist or frend graphs based on your watchlist as per
previous sections emailed to you daily. The first thing you need to do is to register your
details.

6.1 Registering for watch lists

Registering for watch lists is simple and straight forward. You will need a username, first
name, last name, email address (for emailing daily reports), telephone number or
extension, department and location. The figure below shows a simple form to be
completed for watch list registration.

Watch List Registration

Requested Username
Ianthunv

Christian (first) name
|Ar1th ony
Surname (Last Name)
IM apfumo
Internet style email address eg fmocr.user @ auspost.com.au
Ianthunv.mapfumo@ auspe

Tel Number or extension
32010761
Department

INEU
Location (Facility)
|Slac ks Creek

Click submit to register

SUBMIT |

Figure 29 - Watch list registration

After clicking the submit button the registration process will be complete. The next
step will be to define the actual watch lists. These will be stored in your profile. Later on
we will discuss how you can have some of these watch lists form the basis of reports
which can be emailed to you daily. Figure 26 below shows the screenshot

47

immediately after clicking the submit button. It also shows links the watch list editing
page as well as the FMOCR home page.

Click here to return to watchlist edit page

Creating user directory
Creating user information file
Y our information was successfully recorded

USERNAME=anthony

REAINAME=Anthony Mapfumo
TELEPHONE=32010761

DEFPARTMENT=NEU

FACILITY=Slacks Creek

EMAIL=anthony .map fumo®auspost .com.au

Y ou may now continue onto editing watchlists Here

Or return to the FMOCR Log Page Here

Figure 30 - Registration confirmation page

6.2 Creating or editing watch lists

To create or edit watch lists already created you have to log in first by entering your
username. If you haven't registered the page gives you the option to do so. Figure 27
shows a snapshot of the login page.

Click here to register

Edit Watch

Enter the username you registered with to retreive your watch lists
|anthﬂn',.f

Click submit to edit

SUBMIT |

Figure 31 - Watch list editing login page snapshot

After entering your username and clicking on the submit button you will be presented
with the following screen shown in the figure below.

48

Watches for User anthony

Watch List anthony

List Name: Ianrh ony Event: SUBMIT |

User has no watchlists defined vet

List of Al FMOCR Messages, Cut and Paste to add to your list
Note: Use Internet Explorers Edit->"Find on this page" (or press control F) to search for messages

f(#compld) : Busy

$(#compId): Disabled

$(#compIld) : Disconnected
$(#compId): Display was updated
$(#compIld): Enabled

$(#compld): General HW failure
$(#compId): I/0 operation failed
$(#compId): Ignoring errors
$(#compId): Internal RAM defective
$(#compld): Not ready

BEE

Figure 32 - Watch list editing introduction page snapshot

From this page there are a couple of things you should note. The first is that the system
creates a default watch list based on your user name. In this case, the username
name is anthony and the initial watchlist is also called anthony. The second thing to
note is that all possible events are listed in the scrollable text area on the page as
shown in Figure H23 and they are sorted in alphabetical order. In the page above the
first possible event you can include in your watchlist is “$(#compld): Busy” followed by
“$(#compld): Disabled” and so on. To add events to a watchlist find the event you
want to add, press the “Control and F" keys on your keyboard or click “Edit” on
Internet Explorer menu and click on “Find”. The next step is to type in what you want
to find. For example, typing in “ctum” in the search field will give you all ctum related
events (press F3 to move to the next one). When you find an event you like copy it
and paste it into the “Event:” field on the form and then click submit.

In the following example | am interested in “ctum” related events. | have created a
watch list called “ctum” by filling in “ctum” in the “List Name:" field and then clicking
the submit button. After that | copied and pasted the ctum events | am interested in.

The figure below shows the end result.

49

Watches for User anthony

Watch List ctum

List Name: Ictum Event: | SUBMIT I

Current list (Click Reload to refresh)

CTUM 230V circuilt breaker tripped
CTUM Display left side - DCM Communication error

List of All FMOCR Messages, Cut and Paste to add to your list
Note: Use Internet Explorers Edit->"Find on this page" (or press control F) to search for messages

§(#compId): Busy

$(#compId): Disabled

$(#compld): Disconnected
$(#compld): Display was updated
$(#compld): Enabled

$(#compId): General HW failure
$(#comoIdy: I/0 overation failed

BB

Figure 33 - Creating a watchlist

Add as many events to the watchlist list as you want. Once you are happy with the
contents exit the page or type in a new watchlist name in the “List Name:" field and
repeat the process. The next figure shows the screen shot when | have two watch lists
defined.

50

Watches for User anthony

Watch List ctum

List Name: Ictum]Event: I SLUEMIT |

Current list (Click Reload to refresh)

CTUM 230V circuit breaker tripped
CTUM Display left side - DCM Communication error

Watch List stop_events

List Name: Istap_events]Event: I SUBMIT |

Current list (Click Reload to refresh)

: Stopped
CTUM: Automatic stop

Figure 34 - Adding watch lists to your profile

In the above example | have two watch lists. One is called ctum and the other is
called stop_events. The watch list ctum consists of two events | am interested in,
“CTUM 230V circuit breaker tripped” and “"CTUM Display left side - DCM
Communication error”. On the other hand the watch list called “stop_events” consists
of events * : Stopped” and “CTUM: Automatic stop”.

You can define as many watch lists as you like with as many events as you like. In the
next section we are going to discuss how you can have reports emailed to you daily
based on your watch list.

51

7. 0 Email Reports

We understand that you don't always have the fime to visit the RIS website to perform
queries and access tfrend graphs. We have designed the automatic email reporting
system to help you in getting timely information.

To get daily email reports you first have to register for watch lists as described in the
preceding sections.

The first step involves selecting the type of report you are after. The options are “Top
Events”, “Watchlist Comparison” and “Watchlist Graph”. After selecting the type of
report you are after enter your username. If you do not have a username you are
given the option to register yourself for watch lists as described in the section
“Registering for watch lists”.

7.1 Email reports - Top Events

Please select the type of report to register

* Top BEvents [Watchlist Comparison ¢ Watchlist Graph

Top Events Report Clear Reports

Username (Y ou must register here before you can use this feature) Wﬂ rnin o
This will clear all your saved reports

H f the t ing it should be included
oW many ot fe fop r 1 Gm jlems o et Username (Register here before using this feature)
In what order

Count- Events occurring most frequently, Click Submit to clear all your registered reports

Duration = Events present for the longest total time M
COUNT |
At what level of criticality
Stop] Send Report

Just send me an e-mail report right now

Click Save to register your report For User:

Save

o |

Figure 35 - Email reports (Top events)

Select the number of top ranking items that should be included in the report and
finally select the level of crificality. Remember to click on the “Send me a sample
report by e-mail” check box and submit to finalise your registration.

52

7.2 Email reports — Watchlist Comparison

If you have already defined watch lists and you want reports emailed to you based
on those lists then you should click on the “Watchlist Comparison” radio button.
Enter your username and a valid watch list name. If you only want to get an email
report when the total number of events exceed a certain threshold then enter that
threshold just after the label which says “Only send me this report when the total
number of exceeds”. In figure H27 we used 1000 as an example. We will only get a
report if the number of events defined in the watch list called “stop_events” exceeds
1000.

You can also include an events total duration threshold as well. In our example, in
figure H27 in addition to a counts threshold of 1000 we also need a report only if the
events duration total exceeds 35 minutes. If you are not interested in thresholds just
leave them blank or with zeros in them.

Please select the type of report to register

" Top Events [@' Watchlist Comparison ¢ Watchlist Graph

-~ g
Watchlist Comparison Report Clear Reports
Username (Y ou must register here before you can use this feature) Warning:

Use this Watchlist (Y ou must define a watchlist to use this feature) e L S e

Username (Register here before using this feature)

Only send me this report when the total number of events exceeds:

ID— Events Click Submit to clear :)lt: :iour registered reports
or when the total duration of the events exceeds: —II
IG Minutes
Send Report

Click Save to register your report

Save . .
Just send me an e-mail report right now

For User:

Go |

Figure 36 - Email reports (watchlist comparison)

7.3 Email reports — Watchlist Graph

The history graph allows you to have a graphical view of the performance of a
machine or machines over a specified time based on the criteria in watch list. The
type of graphs is same as the ones you get when are doing tfrend queries as
described before. Similar to other email reports, you will need a valid username and
watch list in addition to selecting the machine you are after, graphing period (day,
week, month etc) and the thresholds which will trigger the system to send you reports.

53

¢ Top Events { Watchlist Comparison :@ Watchlist Graph:

History Graph
Username (Y ou must register here before you can use this feature)

Use this Watchlist (Y ou must define a watchlist to use this feature)

What machine do you wish the report for:
| 701 =|

Over what period would you like the graph:
| WEEK =

Over what interval should I accumulate totals (Plot one point per ...)

(Note By Minute will actually plot one point for every 2 Minutes)
| HOUR =|

Only send me this graph when the total number of events exceeds:
IG Events
or when the total duration of the events exceeds:
IG Minutes

Click Save to register your report
Save

Clear Reports

Warning:
This will clear all your saved reports

Username (Register here before using this feature)

Click Submit to clear all your registered reports
Do it |

Send Report

Just send me an e-mail report right now
For User:

Go |

Figure 37 - Email reports (history graph)

8.0 Daily FMOCR Reports - Histograms

Each day we reports that automatically generated by the system and put on the
FMOCR web page. Select the link “Daily Quick Summary [Bar Graphs]” as shown the

snapshot below.

Frequently Asked Questions > [Daily Quick Summary [Bar Gmphs]]

Do an FMOCRE Log Report

FMOCE. Documentation

Do an FMOCR. Trend Graph

Information and Hints & Tips

Figure 38 - Daily quick summary

Currently three reports are generated base on stop events, impair events (feeder)
and impair events (non-feeder). Tables 2 to 4 lists the type of events listed in these

watch lists.

54

Stop Events

Height monitoring 2 (left) triggered

Error at light barrier Thickness Measurement right
Error at light barrier Flat on Injector tube
Pocket not empty

Height Monitoring carrier triggered

Error at light barrier Thickness Measurement left
Finger Belt Feeding Section error: Light barrier
Height monitoring 1 (right) triggered

Compressed air pressure too low

Encoder 2 fault

Clock generator 1 fault

Imaje-Printer timed out in phase 3

Imaje-Printer: No inc

Groove box 865 missing

General optical link communication error

Optical link communication with IDS failed

Error at trigger light barrier OCR/Pre-Barcode-Rea
Optical link communication with IU3 failed

Optical link communication with IP2 failed

Optical link communication with IU2 failed

Optical link communication with IUl failed

Direct injector end switch (stop switch) triggered
JAM at timeout belt

Optical link communication with IP3 failed

Table 2 - Stop events included in the daily report

Impair events - feeder

Jam Feeder

Jam at Pusher

Jam Diverter

MIU: Light Curtain Blocked

FLU Jam at Length Measurement Unit
Invalid Pos. Difference Laydown - Conveyer
Diverter Box almost full

MIU: Jam Security Flap / Security Flap open
Feeder in technical fault

Diverter Box full

Faulty Converter Lay Down Belt

Faulty Converter Side Belt

Position

Diverter Box Overflow / Jam Flap opened
Encoder Jump Transverse Pusher

Encoder Jump at MAIS (via Fiber Link)
Drag Difference Transverse Pusher

Jam in Conveyor Channel

Power Switch Transverse Pusher

Faulty Converter Conveyor Belt
Connecting Rod fracture

Grand Total

Table 3 - feeder impair events included in the daily report

55

Impair events — non feeder

Jam in transport conveyor 2

Gripper vertical drive motor fault: Error O

Jam in transport conveyor 1

SCT fault; Full cartridge not in time inside exit
Transport stop by light curtain

Jam in tray label module no tray pickup

Internal tray queue error

Gripper command ERROR ACKNOWLEDGE failed

No tray on roller-conveyor in full field

CTUM to TLM tray tranfer error

Cartridge inside diagonal light barrier - cartridg
Gripper vertical drive motor fault: Error 55
400V/AC circuit breaker tripped

Diverter (conveyor segments 13 - 18) full or block
Conveyor jam: segment 1

Label printer timeout

Gripper horizontal drive motor fault: Error 55
Entry stop gate left not closed at position

Entry stop gate left not open at position

Entry stop gate right not closed at position

Entry stop gate right not open at position

Tray stopper2: default pos. (up) not reached

Doors not locked

Main Status: Shuttle not ready

Tray stopper2: stop limit sensor down pos. Release
Gripper vertical drive motor fault: Error 40
Conveyor jam: segment 3

Gripper vertical drive motor fault: Error 57

Table 4 - non feeder impair events included in the daily report

The report lists the duration and frequency (count) of each event. It also lists the totals
(frequency and durations) for each type of event for each machine, individually as
well as for all the machines.

Above all the report generates a graphical comparison of machines in the form of a
histogram thereby giving you a quick snapshot of the relative performances of all the
Australia Post FMOCR machines on that day.

We will look at a couple of snapshots to illustrate how this report works.

56

FMOCR Home l Stop Events Impair Events [non Feeder] . pair Events .

Events by duration. 14-11-2004

Event description 701 702 703 704 (705 706 707 (708 Totals (mins)
Height monitoring 2 (left) triggered 04 104 42 [129 (35 182 |39 336

Error at light barrier Thickness Measurement righ 0.7 1.2 1L1 |67 [129 219 |45 39.1

Error at light barrier Flat on Injector tube 07 27 121 45 |61 163 46 07 417

Pocket not empty 0.0

Height Monitoring carrier triggered 28 22 |45 (138 92 924

Error at light barrier Thickness Measurement left 0.7 20 41 |34 147 (204 |02 07 463

Finger Belt Feeding Section error: Light barrier 1.9 4.0 0.7 6.6

Height monitoring 1 (right) triggered 1.1 20 1.7 4.8

Figure 39 - Stop events by duration snapshot

FMOCR Home Stop Events I]mpa.ir Events [non Feeder] Impair Events
Optical link communication with IDS failed 0.5 0.5
Error at trigger light barrier 0.0
OCR/Pre-Barcode-Rea
Optical link communication with TU3 failed 0.5 0.5
Optical link communication with P2 failed 0.5 0.5
Optical link communication with TU2 failed 0.5 0.5
Optical link communication with TU1 failed 0.5 0.5
Direct injector end switch (stop switch) triggered 2.5 2.5
JAM at timeout belt 914 29.2 52.8 |20.7 26 05 (14 198.6
Optical link communication with IP3 failed 0.5 0.5
1713 745 [8l.1 3080 647 [747 500 |100.3 924.5

Comparison Graphs

e Events Total D ggg Ouration Total E=
250
200
150
100

il
]

3

30

i

0

FreguehcyCount.
Ouration Total

L 2R3 704 TR RS 07 FOB L 0 03 Fod FO5 0 06 TO7 VOB

Machine Number Machine Number

Figure 40 - Comparison Graphs

From the snapshots we can see that machine 702 performed better on the 14t of
November 2004 as it had the smallest number of stop events hence the smallest
durations total. This, of course, could be due to a number of factors including the
amount of mail that machine processes per day.

We can also see that machine 707 had the least downtime whilst machine 704 was
involved in a lot of interruptions.

57

9.0 Glossary

RIS — Reliability Improvement Section

NEU - Network Engineering Unit

Safety - Transport Stops, Emergency stops, open covers

Interlock - Other safety devices infended to protect the machinery rather than
people

Stop - Events that will stop the machine immediately

Impair - Events that either impair the machines performance or will stop the machine
after a delay

Warning - Events that indicate a failure is about to happen or that maintenance may
be required in the near future.

Information — In the context of FMOCR event type it means “anything else”.

Count or Frequency means the same thing. This represents the number of fimes the
event occurred in a particular period. For log reports the period is a day, on tfrend
graphs the period is indicated at the bottom of the graph. When looking at a trend
plot it is important to know the period since this will change the upper magnitude of
the graph.

Duration means the duration of the event (The fime the event is present). It should be
noted that the event duration is not related necessarily to the downtime as downtime
is strictly the time between the event start and the next machine start, where the
event duration is the time from the start of the event to when it ends. There is always
some time lapse from when a problem is cleared to when the machine starts
producing again, so for events which stop the machine (most Stop, interlock or safety
category events) the downtime will be greater than the duration.

Trend This just means the behaviour of a variable plotted over time. We plot two
frends the count, and duration trend. By looking at these graphs you can quickly see
when a particular issue starts and ends, how big the problem is and whether you are
making an impact on.

58

15 Appendix B — Desigh documentation

Contents
1.0 FMOCR System Overview 60
1.0 FMOCR System Overview 60
2.0 FMOCR Lo0g file fOrmat.....ccueervuenseeisensseessrenssnnsssenssnesssesssnssssssssnssssssssssssasssssssssasssssssases 60
3.0 Implementation IaNGUAGEcccvvererrrercssrercsssnrcssnissssnsssssnssssssssssssessssssssssssssssssssssssssnsssses 61
4.0 DAta SrUCTUIES.cccueiirrerersrecssnrcsssrecsssnecsssnesssssessssesssssessssssssssssssssssssssesssssssssssssssssssssssssses 61
5.0 FMOCR 10g t0O0IS SUMMATY ...cccivuiiersanicssanicssanesssanesssasessses 61
0.0 FINEIEN...ouuciinniiiiinniinnniiniiiiisnicnsnncsssicsssncssssecssssesssssssssssssssssssssssessssssssssssssssssssssssssssssses 62
6.2 Fmtrend helper fUNCLIONScoouiiiiiiiiiiiiee e 62
7.0 FINPIOC coourinrureisnensnnnsnensnesssessnssssesssnessssssssssssssssassssssssassssasssssssasssssssssssssssssassssassssasssssssasss 63
7.1 USAZE SUIMIMATY:eeeuvieirieieeniteeteeeiteenteesiteeteesteesteesaneebeesaneeaeesaneebeesaneenseesaneenneesaneennees 63
8.0 FINIEPOITLS...nnueensuenssinnsrensnnssrensunsssessnesssnssssssssnssssesssnsssassssassssssssssssasssssssssssssssssassssnsssssssases 63
8.1 USAZE SUMIMATY:eouiiiiiiiiieeiieeie ettt ettt ettt et st e b e et e sbe e st e eaeeseneenbeesaneens 63
8.2 Fmreports helper fUNCLIONS.cocviiriieiiieiie et 63
0.0 ClaSS SUMIMATY cccuverersercssnresssssssssssssssssssasssssssssssasssssassses 64
10.0 Class DeSCIIPLIONS .cccuverrueeireenseessaensnessanssnesssesssnsssassssnssssssssasssssssssssssssssasssassssssssassssassnns 64
10,1 FIMEVENT CIASS ..ottt ettt ettt ettt e et e st eenbeenseeeneas 64
10.1.1 Fmevent class variables..........coiieririirieieeierieeeeeeee e 64
10.1.2 Fmevent public class methods...........coccuieiiiiiiiiiiiiiie e 65
10.1.3 Fmevent private class methodsccceevieiiieiiiiiiiiiecieeeeeee e 66
10.2 QUETY CIASS ..ttt ettt et ettt e et et e et e e bt e et e e saeeenbeesseeenbeenseeeneas 68
10.2.1 Query class Variables........cccuveuieiiiiriieeieeieecie ettt et seae b neees 68
10.2.2 Query class public Methods...........coouiiiiiiiiii e 69
10.2.3 Query class private Methodscccueeevieriiiiiieiiiciiece e 71
10.3 UHIEY CLASS.c.ttiutieitiieeierit ettt sttt ettt st sae e eaeeae e 74
10.3.1 Utility class variablescccceuieriiiiiieiiieiie ettt 74
10.3.2 Utility class public methodsccccooiiriiiiiiiiniiiiiececeeeccece e 74
104 PIOE CLaSS. ...ttt sttt ettt et e sbeebesst e bt et e ente bt entesneennea 78
10.3.1 Plot class variablesoocuioiiiiiiiiiieiiee e 78
10.3.2 Plot class public Methodscccueeiiieriiieiieiiecii et 78
10.3.3 Plot class private Methodsceeriieiiiiiiiiiieieee e 79

59

1.0 FMOCR System Overview

FMOCR machines generate event data which is store in a log file on a machine at the

mail processing centre in question. Each day these log files are then sent over the

Australia Post network to a network centre logging centre server for processing. It is on

this server that our logging tools will be operating on.

2.0 FMOCR Log file format

To understand how FMOCR tools operate it is important to understand the FMOCR log

file format, universal event file format (UEFF).

Field # | Field Name Description

] Date Event starting date

2 Time Event starting fime, floating point seconds from Midnight on
this date

3 uiD A unigue identifier assigned to the event

4 Machine Type Type of machine. FMOCR machines start with 7

5 Machine ID Machine Number

6 Event Type A numeral indicating a common event type.

7 Event Text Machine specific text relating to the event

8 Text Delineator | The character to be used as a field separator

9 Event Data representation of additional event information not otherwise
incorporated info the file

10 Module Module name EG stacker Feeder

11 Module ID Module Instance id EG stacker 56, Feeder 3

12 Event Duration Duration of the event in floating point seconds

13 Event Ciriticality | A textual indicator of the criticality of the event such as
Safety, Interlock, Stop, Impair, Warning etc

14 Impairment An estimate of how this event impaired machine

performance in floating point percentage

Table 5 - FMOCR Log file format

2.1 Example FMOCR log entry

The example below, taken from an actual log file, helps illustrate the format of FMOCR

log files as describe in Table 1 above

8/09/2004,1400.041992,701400044,7,701,Uncategorised, Stop, @, machine feeder 3@

@Stopped, Module, 0, 100000000000, Unknown, -1

60

3.0 Implementation language

The task of analysing FMOCR log files could have been implemented using the many
programming languages available which include Java, Perl and PHP among others. |
choose to implement the required functionality in C++. To understand how | came o
this decision lets at the following points.

The original prototype was written in C

The tools had to be up and running in very short period of time

| am more comfortable with C/C++ than the alternatives

The tools needed to run on Linux and be able to access system calls and
programs like Gnuplot (for graph plotting)

The tools needed be relatively fast. Users needed access to the information
they require pretty fast.

AN NI NN

<\

Since the original prototype was written in C using C++ enabled me to use some of
the existing functions like graph plotting algorithms whilst at the same time utilising the
powerful built in C++ data structures like Vectors. All C programs can be compiled
using the C++ compiler.

Because the FMOCR required tools had to be up and running in a relatively short
period of time C++ cuts development time. For example C++ has automatic memory
management and has an extensive library including lists, maps and vectors. The ability
to overload functions is another productive feature of C++ | infended to exploit.

The utilities needed to make use of external Linux utilities like Gnuplot (for plotting
graphs). C++ enables you to easily call these programs from your tools/programs.
Java can call these external programs as well but the procedure is not as straight
forward as | would like it to be.

4.0 Data Structures

All the three tools in this report make extensive use of C++ Vectors. Arrays, Lists,
Queues or Stacks are not used in any part of these tools. Because FMOCR log files
come in different sizes (hence they contain different number of events) a static data
structure like arrays is out of the question. In fact my own research tells me that arrays
are only slightly faster than vectors.

Another alternative would have been to use a linked list o store the events but |
choose vectors as they are already part of C++, allow random access and | do not
have to worry about memory management.

5.0 FMOCR log tools Summary

Tool Name Description Classes Used
Fmtrend Trend Tool. Reads log files and generate trends Query, Fmevent &
based on user queries. Plot
fmreports Daily reports tool. Generates html reports to be Query, Fmevent &

emailed based on user watch lists. Utility
Fmproc Form processing tool. Fmproc will split an html
form query string into name value pairs.

Table 6 - FMOCR log tools summary

61

6.0 Fmirend

6.1 Fmirend Usage summary:
fmtrend —f<search field> -m<multiple> -w<watch list> -k<search string> <log files>

fmtrend reads log files (which are in comma separated values form), searches for
events which match the user search string. The whole operation is as follows:-

v' Verify that arguments are entered correctly using the function
ValidateFormArguments. Check that files are CSV files using the function
IsCsvFile.

v' Check if the watch list is valid and update the watch list flag called watchlist
accordingly

v Check to see if watchlist flag is set. If it is set create a query object and pass it
the watchlist filename. The query object and the whole query process will be
discussed further later on in this document.

v If there is no watchlist to process just process the user search string

v'If the query returned any results use the Plot class to create graphs to be
displayed to the user.

6.2 Fmtrend helper functions

bool IsCsvFile(string str)

This function tries to establish that a command line parameter, str, given to fmtrend is
a CSV file. It does this by checking if the last four characters are “.csv”. Further checks
will be done by the Query class to see if the files can be opened. This function’'s main
job is to separate FMOCR log files from other command line arguments (other
command line arguments do not end with *.csv”).

ValidateFormArguments(vector<int>& field_keys, vector<string>& search_strings)

We expect the user to enter a search string in the form search fields. If they do not

enter anything in those fields then they should be left with the word “NONE" or blank.

This functions makes sure that empty fields or the ones with the string “NONE"” are not

included in the query.

o field_keys is areference to a vector which will contain form field keys after
validation. Contains integers between 1 and 14 inclusive. For example the field key
for “Event Text” will be 7.

o search_strings is a reference to a vector which will contain form search strings after
validation.

bool CheckFile(string str)

Given a filename we need to be able to verify that it is valid. This function simply tries
to open that file. IF the subsequent file pointer is not NULL then we know its valid and
we return “frue”. If it is NULL then we warn the user that this flename does not point fo
valid file (return “false”) on the system and will be omitted from the queries.

o stristhe filename

62

7.0 Fmproc
7.1 Usage summary:

fmproc <form query string>

When you enter search strings on a form they are posted (sent to the corresponding
CGl) as name value pairs with special characters (including spaces) substituted with
their hexadecimal equivalents. The challenge is to get the actual field values and
convert those hexadecimal values back to the special characters. We especially
need space characters to be preserved when doing phrases queries. This is where
fmproc is useful.

8.0 Fmreports
8.1 Usage summary:

fmreports -W<watchlist> -U<username> -C<count threshold> -D<duration threshold>
<log files> -e<email report> -i<image filename>

fmreports generates reports that can either be displayed on the web server or

" b

automatically emailed to users. It accepts options arguments “username”, *count
1" b

threshold”, “duration threshold”, “email reports”, “image filename” and the
compulsory arguments “log files” and "watch list”

8.2 Fmreports helper functions
bool IsCsvFile(string str)

This function tries to establish that a command line parameter, str, given to fmtrend is
a CSV file. It does this by checking if the last four characters are “.csv”. Further checks
will be done by the Query class to see if the files can be opened. This function’s main
job is to separate FMOCR log files from other command line arguments (other
command line arguments do not end with *.csv”).

Int getMachineNumberFromFileName(string str)
Gets the machine number from the log file

void printUsage()
Displays Fmreports usage to the user, shows the user how to use the programs

bool adequateFiles(vector<vector<string> > filenames)
Determines if the correct number of log files are included on the command line

63

void SortCsvFiles(vector<string> files_from_command_line, vector<vector<string> >&
filenames)

Puts each machine’s log files into the appropriate vector for further processing by the
Query and Utility classes

9.0 Class Summary

Class Name Description

Fmevent Defines and describes an event in the FMOCR log file. Defines
such attributes as machine number, event duration, event
impairment and the time the event happened.

Query Handles all user searches. Can handle queries based on any
property of an Fmevent (event text, event type, duration etc) or
based on user watch lists.

Utility This is a general class which contains many useful helper
functions including html generation, fle name generation,
calculating events count and durations.

Plot Makes use of the open source Gnuplot program to plot events
trends. It prepares the data and confrol files to be given to
Gnuplot program so that it can run in non-interactive mode.

10.0 Class Descriptions

10.1 Fmevent class

The Fmevent class is based on the description of the universal event file format as
previously described in this document.

10.1.1 Fmevent class variables

Class variable Description

vector<string> event_tokens Temporary vector to store event fields

int day C++ integer describing the day the event
happened

int month Integer describing the month the day happened

int year The year the event happened

int vid A unigue identifier assigned to the event

int mach_type Integer defining the machine type

int machID Integer defining the machine id, 701, 702,...,708

int modulelD Module instance identification

double seconds Returns the number of seconds that has elapsed
since midnight.

double event_duration Duration of an event in floating point seconds

double impairment An estimate of how this event impaired machine
performance in floating point percentage

string event_type C++ string describing the event type

string event_text String describing the event text

string event_data C++ string describing the event text

string module Module description

64

string criticality C++ string describing event criticality

string year_temp Temporary full date storage before we split it into
day, month & year

string text delimeter Event text delineator

Table 7 - Fmevent class variables

10.1.2 Fmevent public class methods

Fmevent (string line)

This is the class constructor. After being given a comma separated string which
contains an event information (date, duration, etc) it checks to see if the line contains
valid event information and then initializes all the event fields (duration, module,
criticality, etc) appropriately.

bool Valid()
Does a simple check too see if an event is valid by checking to see if all 14 fields are
defined. Returns false if they are not all completed and true otherwise.

int GetDay()
Returns the day of the month this event happened.

int GetMonth()
Returns the month this event happened.

int GetYear()
Returns the year this event happened, 2004 for example

int GetMachinelD()
Returns the machine identification number associated with this event

int GetModulelD
Returns the module identification number associated with this event

int GetUID
Returns this event’s unique idenftification number

double GetDuration()
Returns this event's total duration in seconds

double GetSeconds()
Returns the number of seconds from midnight till this event started happening

double Getimpairement()
Returns the value of this event's impairment

string GetType()
Returns the type of this event

string GetText()
Returns the description of this event

65

string GetTexitDelimeter()
Returns the text delimiter used to split this event

string GetEventData()
Returns this event’s data

string GetModule()
Get the module name associated with this event

string GetCriticality()
Get this event’s criticality

Int GetTimeHours()
Returns Hours elapsed since 12 midnight when event happened

int GetTimeMinutes()
Returns minutes elapsed since the last hour when event happened

int GetTimeSeconds()
Returns seconds elapsed since the last minute when event happened

int GetMachineType()
Returns this event’'s machine type

void PrintEvent()
Print the contents of this event on the screen. This could be useful as a debugging
function.

void PrintTime()
Print the time this event happened on the screen. This could also be useful as a
debugging function.

10.1.3 Fmevent private class methods
void Tokenize(const string& str, vector<string>& event_tokens, string seperator)

Given a character (e.g. comma) separated strings like an FMOCR log file entry it
separates the values and put them in a vector. All you have to do is give it the string
to separate (str), areference to a vector that will contain the end tokens
(event_tokens) and a character(s) that separate the values.

For example if we give this method the following string (from an FMOCR log file):-

8/09/2004,1400.041992,701400044,7,701,Uncategorised, Stop, @, machine feeder 3@
@Stopped, Module, 0, 100000000000, Unknown, -1

It will be split intfo 14 different strings and stored in the specified vector. The use of

allow us to have an arbitrary number of tokens in a string giving us the flexibility (in the
future) to have log events with say 200 entities without having to rewrite this method.

66

string RemoveQuotes(string str)
Sometimes after splitting, using the tokenize method, a string may have trailing

quotation marks. This method simply removes those quotation marks and refurns a
string without them.

67

10.2 Query class

The query handles all user queries ranging from the ones needed to plot frend graphs
to the ones needed to generate user daily email reports. It can handle an arbitrary
number of queries enabling it to handle multi-filed queries. For example the fmtrend
trend tool currently allows you to search using four different criteria. This is not a
limitation of the query class but of the search form itself. Finally the query class also
understands watch lists. Watch lists are described in the user guide section
accompanying this documentation.

10.2.1 Query class variables

Class variable

Description

int records_count

The number of events in this query

vector<string> filenames

The vector containing FMOCR log filenames to be
used to generate the report

fime_t start_time

Start time of the earliest event. Useful for the plot
class

fime_t end_time

End time of the last event

char s[LINE_LENGTH]

The string to hold the line containing the event entry
in the log file. LINE_LENGTH is defined in the query
class header file as a constant equal to 2049

FILE* filePtr

An arbitrary file pointer

Fmevent* event

A pointer to an Fmevent object

double events_duration_total

The durations total of events in this report/query

vector<string>search_strings

The vector containing the search strings we need to
include in the report/query

vector<string>
temp_search_strings

Temporary storage for search strings. Used in the
constructor to populate search_strings

vector<int>field_keys

Form field keys storage. Keys enable us to
determine what criteria we are searching on. For
example a key of 7 means we are searching on the
event text field

vector<int> temp_field_keys

Temporary form field storage

vector<vector<Fmevent*> >
master_results

When we have multiple queries to perform we store
each result in a vector of Fmevents which in tfurn we
also store in vector thereby ending up with a vector
of vectors

vector<Fmevent*>
unigue_events

FMOCR unigue events. Unique events are used with
the tfrend tool to indicate to the user the unique
events included in the trend.

vector<Fmevent*>
fmreports_vector

FMOCR events to included for the fmreports tool

int num_queries;

Number of queries to perform. This is used for
compound/multiple queries

int current_query

An indication of which query we are at when doing
multiple queries

string search_str

The search string

Table 8 - Query class variables

68

10.2.2 Query class public methods

Query()
This is the default constructor used by the fmreports tool. It takes no arguments and
does not initialise any variables.

Query(vector<string> files, vector<string>search_strings, vector<int>field_keys)

This is the second of three constructors used by the query class. This is used when we

have multiple search strings to include in our queries.

o vector<string> files is the container with the FMOCR log files to use for the query

o vector<string> search strings is the list of search strings to use for our query

o vector<int>field_keys together with the search strings allows us to know which field
of the log file to base our search on. For example if search string is “Shuttle Jam”
and field is “7"” then we know that we are searching for an event text that
matches “Shuttle Jam™.

Query(vector<string> files, vector<string>search_str, vector<int>fields, string
watch_filename)

This is the third and final constructor for the query class. It is similar to the second one
above except for the fact that it contains a file name containing the watch lists
(watch lists are discussed in the help file accompanying this documentation).

void GetResults(vector<Fmevent*>& v, vector<Fmevent*>& v2)

After performing multiple queries this methods update the final vector which contains
the final result and it also updates the unique events found whilst doing the queries.

o Vvisareference to a vector which will contain the final results

o Vv2 will hold unique events included in v.

void Search(int key, string search_str)

Given a key and a search string this method will direct you to the appropriate method
(as described later on in this documents) to handle your query and it will pass on the
search string. For example if you have a key of “7" and a search string of “Shuttle
Jam” this method will match this with a method in this class called
QueryByEventText(search_str) by using C++ case statements.

o key is the form search field

o search_stris the search you are after

void QueryBylmpairement(string var)
Perform your query based on event impairment.
o varis your search string

void QueryByEventCriticality(string var)
The query will be performed based on event criticality.
o varis your search string

void QueryByEventDuration(string var)
The query will be performed based on event duration.

69

o varis your search string. The method will convert it to a double using the C/C++
atof function

void QueryByModulelD(int var)
The query will be performed based on module identification number.
o varis the identification number we are trying to match.

void QueryByModule(string var)
The query will be performed based on the FMOCR module name
o varis the module name we are trying to match

void QueryByEventText(string var)
The query will be performed based on the event text
o varisthe event text we are trying to match

void QueryByEventType(siring var)
The query will be performed based on the event type
o varisthe event type we are trying to match

void QueryByMachinelD(int var)
The query will be performed based on machine identification number
o varis the machine identification number we are trying to match

void QueryByUID(int var)
The query will be performed based on the event’s unique identification number
o varisthe event's identification number we are trying fo match

void QueryByTime(string search_str)

Query the time the event happened. For example to get all the events after 10pm the
method will accept a search_str of 22:00+. Similary for all events before 10pm the
method will accept 22:00- (notice the use of + and - signs). More documentation on
how to perform time based queries is in the user guide. This methods delegates some
of the processing duties to low level functions which are described later in this
document, particularly the function the ProcessTimeQuery.

o Search_strris the tfime the event we are after happened

void QueryByDate(string search_sir);

Performs the query based on the date in question. Use of + and —signs as in
QueryByTime also apply with this method

o Search_strris the date the event we are after happened

void QueryByEventData(string search_str);
Performs the query based on event data.
o Search_stris the event data we are searching for.

void QueryByMachineType(int search_str)
Performs the query based on machine type.
o Search_strris the machine type we are searching for.

void ReportsQuery(vector<double>& totals_duration, vector<int>& totals_count,

vector<string> filenames, string search_strings_source_file, vector<string>&
query_strings)

70

This is the function responsible for processing daily html reports which are either

emailed to clients or displayed on the FMOCR web site.

o Totals_duration is the vector that will be containing the events durations total after
the query is finished

o Totals_countis the vector cor that will be containing the total number of events
meeting the search criteria

o filenames is vector containing the FMOCR log files to use for generating the report

search_strings_source_file is the file containing the watch list

o query_strings is a reference to vector where the search strings (as described in the
watch list) used to generate this report. This is handy when generating the report
html file.

o

bool Match(char* source, char® str, int fmreports)
This function simply determines if the given two strings are equal or if one is a substring
string of the other. It does this by utilising the C library function strstr.

o source is the first string

o stris the other string we are trying to match with

string GetEventsDurations()
Calculates the durations total of all the events in the query results. It formats the result
into a string which will be displayed to the user on the web page.

10.2.3 Query class private methods

time_t GetiniTime (int day, int month, int year, double secs)
returns the number of seconds that has elapsed since 1200.
o day is day of the month
o month is month of the given year
o yearisthe given year
o Sseconds is the given seconds

void UpdateTimeRange(vector<Fmevent*>& results)
This function updates the events time range to be used during the graph plotting
routines.

string ToLowerCase(string source)
This function converts a given string, source, to lower case. This is useful especially
when doing string comparisons.

bool MatchRecord(Fmevent* event, int key, string var)
Given an event, form field key and search string var, the method will use the form field
key to determine with method to delegate the query process using a series of case

71

statements. For example MatchRecord(event, 7, “shuttle Jam”) will result in this
method calling the function QueryByEventText(event, “shuttle Jam”).

o eventis apointer to an Fmevent object

o key if the form field key

o varis the search string
The function returns true if there was a match.

bool ProcessEventDuration(Fmevent* event, string var)
This is a helper function for the EventDurationQuery method.

o varis the string containing duration ranges

o event a pointer to the Fmevent whose duration we are comparing with
Returns tfrue event duration is within the range of var.

bool ProcessTimeQuery(Fmevent* event, string var)
This is a helper function for the QueryByTime query method.

o varis the string containing time ranges

o event a pointer to the Fmevent whose time we are comparing with
Returns true event time is within the range of var.

string QueryRemoveSpace(string source)
This method removes spaces and non-alphanumeric characters on a given string. This
is also useful when doing string comparisons.

void Tokenize(const string& str, vector<string>& event_tokens, string delimiters)
Given an FMOCR log entry or a delimited string, Tokenise will split it into its constituent
tokens and store the result in a vector.

o stris the delimited string

o event_tokens is the vector for storing resultant tokens

o delimiters is the character to used to determine token separation

void UpdateUniqueRecords(vector<Fmeveni*>& events)

We need to able to present the user with unique events that make up the result of
their query. This function checks to see if an event has not been included already and
if not so it will include it. It avoids duplicates being presented to the user.

events is the containing Fmevents

int SecondsSinceMidnight(int hour, int minutes)
Given the number of hours and minutes this function returns the number of seconds
that has elapsed since midnight, 0O00HRS.

o houris the number of hours since midnight

o minutes is the number minutes since midnight

bool Processimpairement(Fmevent* event, string var)
This is a helper function for the ImpairmentQuery method.
o varis the string containing impairment ranges
o event a pointer to the Fmevent whose impairment we are comparing with

72

Returns tfrue event impairment is within the range of var.

char* GetTextAndDuration(char* str, int event_field, int duration_field, double&
event_duration, char *Buffer, int flag)

Given an FMOCR log file entry/line this function will split intfo tokens and extract the
“event text” and “event duration” fields. It makes use of the C library function strsep.
We could have used strtok for tokenising the entries but it suffers from its inability to
handle null fields as compared to strsep.

Stris the log file entry/line

event_field is the field number for event text

duration_field is the field number for the event duration field

event_duration is a reference to the actual event duration extracted from the
log file entry

The function returns the event text from the log file entry.

o
o
o
O

void WatchlListQuery(string watchlist_filename, vector<Fmevent*>& events)
When the user wants to include a watch list in their query this function will handle that.
It reads the contents of the watch list flename and stores the results in events vector.
o watchlist_filename is the filename containing the watch lists
o eventsis the storage container for Fmevents

73

10.3 Utility class

The utility class helps in implementing the fmreports tool by providing simple but
powerful methods like generating html table captions, generating flenames. Instead
of putting everything in the fmreports tool the utility class handles most of the general
functionalities. In fact some of the methods in the utility class should be able to be
used by future unified logging system tools.

10.3.1 Utility class variables

Class variable

Description

vector<int> machnos

FMOCR machine numbers container

time_t current

The current time as C/C++ time_t

fm local

Time as C/C++ tm structure

char* imgtagtemplate

The image template to be used by the
GNU/Gnuplot graph plotting program

string csvfilename

The FMOCR log file

string picfilename

The filename of the image generated by
GNU/Gnuplot

string working_dir

fmreports working directory

string watchlist

Watch list flename as string

char watchname[120]

Watch list flename as char

char ctlfilename[2048]

The control flename to be used by the

GNU/Gnuplot graph plotting program

string username The username of the person requesting the

reports

bool multiple_graphs Multiple graphs control flag

bool durations_graph_only Events durations only graphs control flag

string graph_xrange Graph plotting range

bool count_graph_only Events count only graphs control flag

10.3.2 Utility class public methods

Utility(vector<int> machno, string user, string working_directory, string watch="none");
This is the class constructor. It takes the following arguments:-

o machno is the vector containing the FMOCR machine numbers

o useris the username of the person requesting the report

o working_directory is the fmreports working directory

o watch is the watch list name

void PrintHtmIHeader(string html_filename, string html_title)
This method creates the report html file and writes the html head including setting the
html page title. The rest of the file will be finished off by other functions including
WriteHtmITable and PrintHtmITail.

o html_filename is the required html filename

o html_title is the html page titile

void PrintHtmITail(string html_filename, string image)

74

This function finishes off writing the html report by including the generated graph and
closing the html tags like "</body>" and “</htmI>".

o html_filename is the html filename

o Iimage is the generated graph name

void WriteCsvFile(string ploffile_csv, vector<int> horizontal_totals, string pndfile, string
ctifile)

WriteCsvFile will generate a comma separate value file (based on the events
count/frequency) to be used by the GNU/Gnuplot utility fo generate comparison
histograms.

plotfile_csv is the required CSV filename

horizontal_totals is the vector containing the events count totals

pngfile is the filename of the resultant comparison graph (histogram) in png format
ctifile is the Gnuplot control flename

void WriteCsvFile(string ploffile_csv, vector<double> horizontal_totals, string pndfile,
string ctlfile)

WriteCsvFile will generate a comma separate value file (based on the events’
durations) to be used by the GNU/Gnuplot utility to generate comparison histogrames.
plotfile_csv is the required CSV filename

horizontal_totals is the vector containing the events count totals

pngfile is the filename of the resultant comparison graph (histogram) in png format
ctlfile is the Gnuplot control flename

void WriteHtmITable(vector<string> events, string html_file, vector<vector<int> >
master_totals, int count)
This function writes the query results (counts totals) onto an html table for presentation
to the user requesting the report.

o eventsis the vector containing the Fmevents in the result

o html_file is the html filename

o master_totals is the vector containing vectors of events totals

o countis user count threshold

void WriteHtmITable(vector<string> events, string html_file, vector<vector<double> >
master_totals, double duration)
This function writes the query results (duration’s totals) onto an html table for
presentation to the user requesting the report.

o eventsis the vector containing the Fmevents in the result

o html_file is the html filename

o master_totals is the vector containing vectors of events durations totals

o countis user count threshold

void GetHorizontalCountiTotals(vector<vector<int> > master_totals, vector<int>&
results)

75

GetHorizontalCountTotals calculates the table horizontal totals (events
count/frequency) to be included in the report html table.

o master_totals is the vector containing vectors of events totals

o resulfsis the vector that will be containing the results

void GetHorizontalCountTotals(vector<vector<double> > master_totals,
vector<double>& results)
GetHorizontalCountTotals calculates the table horizontal totals (events durations
totals) to be included in the report html table.

o master_totals is the vector containing vectors of events durations totals

o resulfsis the vector that will be containing the results

void GetVerticalCountiTotals(vector<vector<int> > master_totals, vector<int>& results);
int GrandTotal(vector<int> v)
GetVerticalCountTotals calculates the table vertical totals (events count/frequency)
to be included in the report html table.

o master_totals is the vector containing vectors of events totals

o resultsis the vector that will be containing the results

void GetVerticalCountTotals(vector<vector<double> > master_totals,
vector<double>& results)
GetVerticalCountTotals calculates the table vertical totals (events durations totals) to
be included in the report himl table.

o master_totals is the vector containing vectors of events durations totals

o results is the vector that will be containing the results

int GrandTotal(vector<int> v)
This function sums the contents of the vector v, containing integers (events
count/frequency, and refurns the total.

string GetCaption()
Generates the html table caption

double GrandTotal(vector<double> v)
This function sums the contents of the vector v, containing doubles (event durations),
and returns the total.

void Plot(string csvfile, string ctlfile, string pndfile)

76

Given a CSV file, a control file for the Gnuplot utility and the required portable
network graphics flename the function will plot a histogram comparing different
machines performance.
o csvfile is the comma separated values flename containing machines
performance data
o cflfileis the control flename for the Gnuplot program
o pndfile is the filename of the resultant PNG file

void Plot(string csvfile, string csvfile_2, string cflifile, string pndfile)

Given a CSV file, a control file for the Gnuplot utility and the required portable
network graphics flename the function will plot a histogram comparing different
machines performance.

void SetControlFileTemplate()
This method sets the control file template. The control file is used by the Gnuplot utility.
It contains control information like image size, image format and image title.

string GenerateFileName(string username)
Generates an output filename associated with the report based on username, current
date and time. This is useful during generation of multiple reports.

o username is the name of the user requesting the report.

void setMultipleGraphs(bool my_bool)

Sets the Gnuplot control file template based on whether one or two graphs are
required.

my_bool is a flag indication whether one or graphs are required

77

10.4 Plot class

The plot class is responsible for creating tfrend graphs for the mail sorting machines. In
order to create such graphs appropriate data has to be gathered and prepared for
the Gnuplot utility to produce the graphs. Appropriate time ranges have to be
calculated based on what the user selected from the form. For example a user might
a trend over a week'’s period of time or for the whole month.

10.3.1 Plot class variables

Class variable Description

const char** ctlfletemplate Gnuplot control file template

int total_records Total number of records/events involved in plotting
the tfrend graph

int filecount Total number of FMOCR log files involved in
creating the graph

int inspect Checks to see if two minute intervals are needed

int multiple Do we need multiple graphs

long hours_per_bucket Hours per plot bucket

long secs_per_bucket Seconds per bucket

FILE *errout Program errors file pointer, will eventually point to
standard error, stderr

int HOUR, MIN, SEC Hours, minutes and seconds

double plot_data[POINTS + Plot data to be included in the CSV file for the

10][2] Gnuplot program. POINTS is declared in the
definitions section as equal to 744

fime_t plot_start, start Plot start time

time_t plot_end, end Plot end time

fime_t plot_increment Plot increment time

char* imgtagtemplate Gnuplot image template

char csvfilename[2048] CSV file containing plot data

char picfilename[2048] Resultant image/graph filename

struct timerange_s Plot fime range

char ctlflename[2048] Control file name

Table 9 - Plot class variables

10.3.2 Plot class public methods

Plot(time_t st, time_t et, int int_multiple, int interval=0)
The plot constructor relies on the calling class to have calculated the plot start and
end fimes. If no plotting interval is provided

time_t AlignTimeToDay(time_t t)
This functions aligns time so that the reference point is 12 midnight. A common
reference point is important when generating trends.

o tisthe time that needs to be aligned

78

void PlotPoint(time_t x, double Duration)

PlotPoint generates the plot data to be used by the Gnuplot program
o xIisthe aligned time
o Duration is the events duration

void DumpPlot (time_t end, const char *image_filename)
After setting up the control file template DumpPlot calls Gnuplot to plot the trend
graph.

o endis plot end time

o Image_filename is the name of output graph/image

void SetStariTime(time_t start)
SetStartTime sets the plot start time.

void SetEndTime(time_t end)
Sets the plot end time

void CalculatePlot (vector<Fmevent*> results)
Calculates the plot points by calling the DumpPlot function
o resultsis a vector containing the query results from which we will get such
attributes as event duration

10.3.3 Plot class private methods

void SetControlFileTemplate()
The Gnuplot (see glossary) program we make heavy use of in this project relies on

control files for non-interactive operation. Gnuplot control files set the required output

file format (png, jpeg. gif, etc) and the size of the image among other things.
This function sets the Gnuplot control file tfemplate.

time_t GetiniTime (int day, int month, int year, double secs);
This function combines the given day, month, year and seconds into a long integer
such that it is the number of seconds that has elapsed since 1900.

79

Makefiles

Fmtrend tool makefile

fmtrend: fmtrend.o fmevent.o query.o plot.o
g++ -pg -0O3 -static -o fmtrend fmtrend.o fmevent.o query.o plot.o
fmtrend.o: fmtrend.cpp fmevent.h query.h
g++ -c -pg -O3 fmtrend.cpp
fmevent.o: fmevent.cpp fmevent.h
g++ -c -pg -O3 fmevent.cpp
plot.o: plot.cpp plot.h fmevent.h
g++ -c -pg -O3 plot.cpp
query.o: query.cpp query.h fmevent.h
g++ -c -pg -O3 query.cpp

fmreports tool makefile

fmreports: fmreports.o fmevent.o query.o utility.o
g++ -static -g -03 -o fmreports fmreports.o fmevent.o query.o utility.o
fmreports.o: fmreports.cpp fmevent.h query.h
g++ -c -g fmreports.cpp
fmevent.o: fmevent.cpp fmevent.h
g++ -c -g fmevent.cpp
uftility.o: utility.cpp utility.h fmevent.h links.h
g++ -c -g utility.cpp
query.o: query.cpp query.h fmevent.h
gt++-C -g query.cpp

80

Testing

Because of the large data sets involved it have been difficult to do thorough testing
within the given test plan. The following essential tests were still conducted.

User input tests
1. Non-existent log file tests
2. Non-existent watch lists
3. Empty search strings
4. lllegal search strings (i.e. entering alphabetic characters where integers are
required or entering dates in the wrong format)

Program execution tests
Plotting of graphs

1.
2. Automatic emailing of reports
3. NULL files handling
4. handing of incomplete records (less than 14 fields per record)
5. large log file processing (more than 15,000 records)
6. small log file processing (less than 500 records)
7. Caching of log files
Glossary

FMOCR - Flats Multiline Optical Character Recognizer
Gnuplot - Gnuplot is a command-line driven program for producing 2D and 3D plofts.
UEFF — Universal Event File Format

PNG - Portable network graphics. It was developed as a replacement for the GIF
standard due to legal entanglements resulting from GIF's use of the patented LZW
compression scheme, and also because of GIF's many limitations. PNG is superior to
GIF.

CSV - Comma Separated Values file format such as the ones used by FMOCR log files
Vector — In the context of this documentation, a vectoris a C++ storage container
capable of storing any valid C/C++ data structure.

81

16 Appendix C - Source code

82

